一直以来,人们对下层原子与表面电子态之间的关系缺乏认识,因而导致了一系列的争议。近期,中国科学院强磁场科学中心陆轻铀教授课题组提出了一种“集体干涉”理论模型,通过引入层间作用因子,能够定量地揭示它们之间的关联。相关研究以《下层原子散射表面电子的扫描隧道显微学证据》(Scanning tunneling microscopy evidences for surface electron scattering by underlying atoms)为题,发表于最新一期《碳》(Carbon)杂志上。

  借助自主研发的高质量超高真空扫描隧道显微镜,课题组首次观测到石墨中原子分辨率的第二层刃型位错(亚表面原子台阶),这一发现直观地展现了表面电子态的分布随着层间作用的变化而显著改变这一现象。进一步的研究发现,通过对石墨样品热处理,在石墨晶界附近观测到大量奇异的超结构(superstructure)。课题组提出了一种简单明晰的“集体干涉”理论模型,能够解释这些现象:表面原子、下层原子以及这两层中的缺陷均能散射表面电子,对电子态的分布均有贡献,而下层的原子和缺陷通过改变表面散射势的强度参与表面电子的散射。经过理论模拟,下层原子对电子态的影响可以通过层间作用因子进行定量分析。这一研究成果(尤其在原子尺度上)对理解层状材料的层间相互作用的本质以及特定表面电子态的调制具有重要意义。

  该研究工作受稳态强磁场实验装置组合显微测试系统支持,受中央高校基本科研业务费专项资金、国家自然科学基金资助。

  

(a)石墨表面电子波的集体干涉模型,(b)表面层和下层的散射势及其在表面层中的总散射势,(c)-(e)以不同层间作用因子(见(f))模拟出的石墨STM图像,这些图像在石墨缺陷附近都被实际测量到了。

  

用STM在石墨上测得的原子分辨率的第二层刃型位错(上排图(a)-(e)),三段弧O圈超结构(下排图(a))及其集体干涉模型的模拟结果(下排图(b))。

相关文章

首个速度达拍赫兹光电晶体管问世

在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......

科学家首次利用人工智能观察原子运动

科学家们开发出了一种开创性的人工智能驱动技术,它能揭示纳米粒子的隐秘运动,而纳米粒子在材料科学、制药和电子学中至关重要。通过将人工智能与电子显微镜相结合,研究人员现在可以直观地看到以前被噪声掩盖的原子......

精准制造:从微纳米迈向原子尺度

“空天海地的网络建设,信息世界感知力、通信力以及智算力的建设,迫切需要高端、新型的硅基芯片。然而‘自上而下’的光刻技术制造方式已经接近物理极限。”在日前举行的香山科学会议上,中国科学院院士许宁生说,全......

轨道角动量单极子证实存在

科技日报北京9月27日电 (记者张梦然)轨道角动量(OAM)单极子目前是理论物理学研究的重点,因为它为新兴的轨道电子学带来巨大的实际优势。最近,科学家结合理论分析与瑞士光源(SLS)的实验工......

新突破!最快阿秒显微镜问世,可定格电子运动

电子的运动速度极快,一秒钟内就能绕地球好几圈。美国亚利桑那大学团队开发出一款世界上最快的阿秒显微镜,能做到抓拍运动电子的定格图像。该显微镜将为物理学、化学、生物工程、材料科学等领域带来突破。研究成果发......

固体材料内发现“暗”电子

科技日报北京8月20日电(记者刘霞)韩国科学家在二硒化钯等固体材料内发现了一些“暗”电子,此前科学家借助光谱学分析材料特性时,没有检测到这些“漏网之鱼”。这些“暗”电子的发现或有助更好地理解高温超导体......

世界首个原子级量子传感器问世

7月25日,韩国基础科学研究所(IBS)量子纳米科学中心(QNS)和德国尤里希研究中心的国际研究团队开发出世界上首个原子级量子传感器,能够检测原子尺度的微小磁场。相关论文25日发表在《自然·纳米技术》......

2024年中国科学技术大学潘建伟团队发表4篇Nature/Science

费米子哈伯德模型(FHM)描述了由强电子-电子相关性引起的广泛的物理现象,包括非常规超导的推测机制。然而,解决其低温物理问题在理论上或数值上都具有挑战性。光学晶格中的超冷费米子提供了一个干净且控制良好......

药监局注销电子上消化道内窥镜医疗器械注册证书

国家药监局关于注销电子上消化道内窥镜医疗器械注册证书的公告(2024年第75号)按照《医疗器械监督管理条例》的规定,根据企业申请,现注销上海安翰医疗技术有限公司电子上消化道内窥镜医疗器械注册证,注册证......

原子尺度解析氢气环境中铁的氧化还原相变路径

铁的氧化还原是自然界中最基本的反应过程之一。在地质学中,铁氧化物在地球内部与岩浆气发生氧交换作用,对古代气候演变产生了重大影响。历史上,从富含铁元素的矿石中冶炼钢铁是人类文明发展的基石。如今,功能化铁......