上一篇文章,我们只是粗略地介绍了一下吸波材料的类型和与吸波原理相关的知识。那么您可能会问:吸波材料为什么会吸收电磁波?在接下来的文章中,我们会向您较详细地介绍吸波材料的两大类吸波机制。今天我们向您介绍损耗型吸波机制。
材料损耗是指电磁波进入吸波材料内部,其能量被材料有效吸收,转化为热能或其他形式能量而耗散掉。设计这种类型的吸波材料一般需要考虑两个方面:阻抗匹配设计和衰减设计。阻抗匹配设计是指创造特殊的边界条件使入射电磁波在材料介质表面的反射系数R 最小(理想情况R = 0),从而使电磁波最大程度地进入材料内部。
根据电磁场理论[1] ,当电磁波由阻抗为Z0 的自由空间垂直入射到阻抗为Z 的半无限介质表面时,其反射系数R 满足:
----------- (1)
式中:
为介质波阻抗:
, 为自由空间波阻抗。在使尽可能多的电磁波入射进入吸波材料内部,我们就是要尽可能降低反射系数R。
当介质有损耗时,相对磁导率 和相对介电常数 表示为复数:
,
其中,实部 和 表征了材料的储能容量,如磁化能和电容;而虚部 和 为极化损耗。由公式(1) 很容易推得,理想情况下的阻抗匹配公式:
--------(2)
然而,由于u和e都是与频率 有关的函数,同一介质某个频率 的 和 难以都满足公式(2) ,因此该公式是相当苛刻的。为此, 秦柏、秦汝虎等人提出一种更容易让人接受的阻抗匹配公式: 
即“广义匹配定律”[2 ]:
,并且指出该公式可以作为有效地选择材料和材料厚度的判据, 利用该公式容易获得展宽、减轻、减薄的吸收剂。
衰减设计是指选用合理的损耗介质(吸收剂)以及合理的材料结构特征,以便使进入材料内部的电磁波迅速地最大限度地衰减掉。损耗介质对电磁波的衰减能力常用电损耗角正切
和磁损耗角正切
来表示,其值越大,衰减能力越强。从这一点来看, 似乎意味着介质的 和 越大,吸波能力越强。然而,损耗介质的选用和材料的结构设计往往是紧密联系在一起的。实际工作中,常常根据不同的结构设计方案来选用具有合适电磁参数的损耗介质。因此,一心追求大的 或 的做法是不对的。
简而言之,损耗型吸波机制就是尽可能增大入射电磁波量,尽可能加强热转换率,从而达到尽可能大的电磁波吸收功效。
在接下来的一篇文章中,我们将向您介绍吸波材料的另一类吸波机制:结构型吸波机制。绝大部分吸波材料的吸波机制也无外乎是这两类中的一种。
参考文献:
[1] 毕德显,电磁场理论,北京电子工业出版社,1985:450-454
[2] 秦柏,秦汝虎,金崇君,“广义匹配规律”的论证及在宇航材料工艺,2004-5
近日,青海盐湖研究所与西北工业大学联合研究团队在液态金属基吸波材料领域取得了重要进展,标志着我国在新一代电磁波吸收材料研制更上一层楼。相关论文发表于《先进科学》。随着电磁污染问题的日益严重和高端电子设......
安徽理工大学化学工程学院疏瑞文教授团队,合成了氮掺杂石墨烯/中空钴铁氧体复合气凝胶,可用于电磁辐射“污染”防护、电磁干扰屏蔽、军事隐身、隔热防火等领域。相关研究成果发表于《材料科学与技术》。超轻氮掺杂......
记者11月29日从青岛大学获悉,该校材料科学与工程学院以复合材料与工程专业2018级本科生齐广雨为第一作者、解培涛副教授为通讯作者、刘春朝教授为共同通讯作者在《先进化合物和杂化材料》上发表论文称,他们......
据俄罗斯塔斯社近日报道,俄罗斯托木斯克理工大学的科学家发明了一种快速制备氧化铁纳米粉末的方法。这种粉末能够几乎完全吸收电磁辐射,可用于加工军事装备并消除电磁干扰。据托木斯克理工大学动力工程学院的专家介......
吸波材料是能有效吸收入射电磁波、降低目标回波强度的一类功能材料。传统的吸波材料大多是基于Salisbury吸收屏原理设计,其典型不足是体积过大。随着通信、隐身等领域对吸波材料性能要求越来越高,传统吸波......