发布时间:2018-06-01 22:36 原文链接: 地化所提出一种可能的青藏高原东北缘生长和变形机制

  青藏高原如何生长和变形,一直存在极大争议。前人提出的模型主要有连续变形、块体端元变形等。近年一个非常受关注的模型是中下地壳流模型。

  为了研究青藏高原在其边界部位的变形和扩展情况,中国科学院广州地球化学研究所博士邓阳凡及其合作者使用Vp速度约束下的接收函数与面波频散联合反演方法得到了青藏高原东北缘一条剖面(从青藏高原腹地到阿拉善块体)的二维Vs和Vp/Vs结构。Vp速度来源于人工源深地震测深结果,接收函数来源于37台宽频带地震台站,包括自己布设的流动地震台站,IRIS和CEA台站。

  主要的结构特征有低速层在各个块体具有不同的强度,高Vp/Vs与低速层相对应,断裂带附近出现莫霍面跳变和速度变化,岩石圈地幔的速度异常,地壳与地幔顶部异常的相关性等。

  这些结果暗示着一种岩石圈尺度的变形,该变形受到连续缩短变形和局部断裂带控制,并被块体的强度影响。低速层的幅度和范围代表着不同的变形阶段,SGT和KQT经历了长时间变形,CQL和NCC处于初始变形阶段。加厚的岩石圈地幔可能被剥离,对地壳的低速层有促进作用可能导致流动。但是该流动不是高原隆升扩展的动力,而是持续变形的结果。所提出的模型一方面与块体内的连续变形相一致,另一方面与地表大型断裂带相吻合。


青藏高原如何生长和变形,一直存在极大争议。前人提出的模型主要有连续变形、块体端元变形等。近年一个非常受关注的模型是中下地壳流模型。

  为了研究青藏高原在其边界部位的变形和扩展情况,中国科学院广州地球化学研究所博士邓阳凡及其合作者使用Vp速度约束下的接收函数与面波频散联合反演方法得到了青藏高原东北缘一条剖面(从青藏高原腹地到阿拉善块体)的二维Vs和Vp/Vs结构。Vp速度来源于人工源深地震测深结果,接收函数来源于37台宽频带地震台站,包括自己布设的流动地震台站,IRIS和CEA台站。

  主要的结构特征有低速层在各个块体具有不同的强度,高Vp/Vs与低速层相对应,断裂带附近出现莫霍面跳变和速度变化,岩石圈地幔的速度异常,地壳与地幔顶部异常的相关性等。

  这些结果暗示着一种岩石圈尺度的变形,该变形受到连续缩短变形和局部断裂带控制,并被块体的强度影响。低速层的幅度和范围代表着不同的变形阶段,SGT和KQT经历了长时间变形,CQL和NCC处于初始变形阶段。加厚的岩石圈地幔可能被剥离,对地壳的低速层有促进作用可能导致流动。但是该流动不是高原隆升扩展的动力,而是持续变形的结果。所提出的模型一方面与块体内的连续变形相一致,另一方面与地表大型断裂带相吻合。


青藏高原如何生长和变形,一直存在极大争议。前人提出的模型主要有连续变形、块体端元变形等。近年一个非常受关注的模型是中下地壳流模型。

  为了研究青藏高原在其边界部位的变形和扩展情况,中国科学院广州地球化学研究所博士邓阳凡及其合作者使用Vp速度约束下的接收函数与面波频散联合反演方法得到了青藏高原东北缘一条剖面(从青藏高原腹地到阿拉善块体)的二维Vs和Vp/Vs结构。Vp速度来源于人工源深地震测深结果,接收函数来源于37台宽频带地震台站,包括自己布设的流动地震台站,IRIS和CEA台站。

  主要的结构特征有低速层在各个块体具有不同的强度,高Vp/Vs与低速层相对应,断裂带附近出现莫霍面跳变和速度变化,岩石圈地幔的速度异常,地壳与地幔顶部异常的相关性等。

  这些结果暗示着一种岩石圈尺度的变形,该变形受到连续缩短变形和局部断裂带控制,并被块体的强度影响。低速层的幅度和范围代表着不同的变形阶段,SGT和KQT经历了长时间变形,CQL和NCC处于初始变形阶段。加厚的岩石圈地幔可能被剥离,对地壳的低速层有促进作用可能导致流动。但是该流动不是高原隆升扩展的动力,而是持续变形的结果。所提出的模型一方面与块体内的连续变形相一致,另一方面与地表大型断裂带相吻合。


  为了研究青藏高原在其边界部位的变形和扩展情况,中国科学院广州地球化学研究所博士邓阳凡及其合作者使用Vp速度约束下的接收函数与面波频散联合反演方法得到了青藏高原东北缘一条剖面(从青藏高原腹地到阿拉善块体)的二维Vs和Vp/Vs结构。Vp速度来源于人工源深地震测深结果,接收函数来源于37台宽频带地震台站,包括自己布设的流动地震台站,IRIS和CEA台站。

  主要的结构特征有低速层在各个块体具有不同的强度,高Vp/Vs与低速层相对应,断裂带附近出现莫霍面跳变和速度变化,岩石圈地幔的速度异常,地壳与地幔顶部异常的相关性等。

青藏高原如何生长和变形,一直存在极大争议。前人提出的模型主要有连续变形、块体端元变形等。近年一个非常受关注的模型是中下地壳流模型。

  为了研究青藏高原在其边界部位的变形和扩展情况,中国科学院广州地球化学研究所博士邓阳凡及其合作者使用Vp速度约束下的接收函数与面波频散联合反演方法得到了青藏高原东北缘一条剖面(从青藏高原腹地到阿拉善块体)的二维Vs和Vp/Vs结构。Vp速度来源于人工源深地震测深结果,接收函数来源于37台宽频带地震台站,包括自己布设的流动地震台站,IRIS和CEA台站。

  主要的结构特征有低速层在各个块体具有不同的强度,高Vp/Vs与低速层相对应,断裂带附近出现莫霍面跳变和速度变化,岩石圈地幔的速度异常,地壳与地幔顶部异常的相关性等。

  这些结果暗示着一种岩石圈尺度的变形,该变形受到连续缩短变形和局部断裂带控制,并被块体的强度影响。低速层的幅度和范围代表着不同的变形阶段,SGT和KQT经历了长时间变形,CQL和NCC处于初始变形阶段。加厚的岩石圈地幔可能被剥离,对地壳的低速层有促进作用可能导致流动。但是该流动不是高原隆升扩展的动力,而是持续变形的结果。所提出的模型一方面与块体内的连续变形相一致,另一方面与地表大型断裂带相吻合。


  这些结果暗示着一种岩石圈尺度的变形,该变形受到连续缩短变形和局部断裂带控制,并被块体的强度影响。低速层的幅度和范围代表着不同的变形阶段,SGT和KQT经历了长时间变形,CQL和NCC处于初始变形阶段。加厚的岩石圈地幔可能被剥离,对地壳的低速层有促进作用可能导致流动。但是该流动不是高原隆升扩展的动力,而是持续变形的结果。所提出的模型一方面与块体内的连续变形相一致,另一方面与地表大型断裂带相吻合。

青藏高原如何生长和变形,一直存在极大争议。前人提出的模型主要有连续变形、块体端元变形等。近年一个非常受关注的模型是中下地壳流模型。

  为了研究青藏高原在其边界部位的变形和扩展情况,中国科学院广州地球化学研究所博士邓阳凡及其合作者使用Vp速度约束下的接收函数与面波频散联合反演方法得到了青藏高原东北缘一条剖面(从青藏高原腹地到阿拉善块体)的二维Vs和Vp/Vs结构。Vp速度来源于人工源深地震测深结果,接收函数来源于37台宽频带地震台站,包括自己布设的流动地震台站,IRIS和CEA台站。

  主要的结构特征有低速层在各个块体具有不同的强度,高Vp/Vs与低速层相对应,断裂带附近出现莫霍面跳变和速度变化,岩石圈地幔的速度异常,地壳与地幔顶部异常的相关性等。

  这些结果暗示着一种岩石圈尺度的变形,该变形受到连续缩短变形和局部断裂带控制,并被块体的强度影响。低速层的幅度和范围代表着不同的变形阶段,SGT和KQT经历了长时间变形,CQL和NCC处于初始变形阶段。加厚的岩石圈地幔可能被剥离,对地壳的低速层有促进作用可能导致流动。但是该流动不是高原隆升扩展的动力,而是持续变形的结果。所提出的模型一方面与块体内的连续变形相一致,另一方面与地表大型断裂带相吻合。


相关文章

同位素示踪青藏高原东南缘深部物质循环

中国科学院广州地球化学研究所博士生徐东晶在副研究员齐玥与研究员王强的指导下,选取青藏高原东南缘云南马关地区新生代含有大量地幔包体的碱性玄武岩作为研究对象,开展了全岩地球化学和Sr-Nd-Mo同位素研究......

国际首次!我国科研团队完成超导太赫兹通信实验

近日,中国科学院紫金山天文台牵头的联合实验团队在青藏高原成功实现了基于超导接收的高清视频信号公里级太赫兹无线通信传输,这是目前国际上首次将高灵敏度太赫兹超导接收机技术成功应用于远距离无线通信系统。这次......

近400米!第二次青藏科考队发现青藏高原最厚冰川

第二次青藏科考标志性科考活动守护水塔“一原两湖三江”科考从今年8月18日开始在青藏高原高海拔地区展开,有6个科考分队15个科考小组400多名科考队员参与。到9月30日,主体任务已基本完成,科考取得多项......

深入腹地青藏高原二次科考创造多个“第一”

近日,由中国科学院青藏高原研究所牵头,联合兰州大学、西南石油大学等科研单位,在青藏高原腹地进行的综合地质地理科学考察活动圆满结束,进入了后期的总结研究阶段。本次科考作为第二次青藏高原科考的重要组成部分......

刷新纪录!我国青藏高原环境科学钻探深度达750米

近日,我国第二次青藏高原综合科学考察研究取得新进展。在国家自然科学基金委“青藏高原地球系统基础科学中心项目”、重点项目“青藏高原中部伦坡拉-尼玛盆地印度季风演化与高原北移隆升”以及第二次青藏高原综合科......

屹立高原30年!科学家在这里为地球“把脉”

大气的无常运行,气候的寒来暑往,形成了万千自然现象,与我们的生产生活息息相关。屹立高原30年它为地球“把脉”、给大气测温位于青海省海南藏族自治州瓦里关山山顶的中国大气本底基准观象台也被称为瓦里关全球大......

青藏高原冰川研究:冰川消融对汞循环的影响不容忽视

近日,澎湃新闻从中国科学院西北生态环境资源研究院了解到,该院冰冻圈科学与冻土工程重点实验室科研团队对青藏高原东南部冰川径流汞排放的研究发现:季风期冰川径流中总汞浓度高于非季风期,冰川消融对区域水生生态......

拓荒岁月:中国自然资源科考从这里出发

1979年,郭长福、孙鸿烈、漆冰丁(左起)等人在西藏雅鲁藏布江中游宽谷区开展土地资源考察。1975年,研究人员在珠穆朗玛峰登山科考。1990年,在可可西里无人区考察时车陷在路上,考察队队员们一起推、拉......

我国科学家发现青藏高原持续生长核心动力源来自“地幔风”

近期,来自中国科学院地质与地球物理所的科学家团队用定量地球动力学模型揭示出,青藏高原持续生长核心动力源来自从南向北的“地幔风”。该“地幔风”北向推动印度板块和亚欧板块的南缘持续碰撞,从而导致青藏高原几......

中国科学院:以科研成果护高原生态

青藏高原是我国重要的生态安全屏障。寒来暑往,中国科学院一代又一代的科研人员扎根雪域高原不懈探索,开展若尔盖湿地生态修复、推动沙化土地治理、监测高寒草原生态状况,在揭示环境变化机理、优化生态安全屏障体系......