发布时间:2019-07-15 16:47 原文链接: 基因编辑大牛张锋开发出RESCUE技术,可扩大RNA编辑能力

  基于CRISPR的工具彻底改变了我们靶向与疾病相关的基因突变的能力。CRISPR技术包括一系列不断增长的能够操纵基因及其表达的工具,包括利用酶Cas9和Cas12靶向DNA,利用酶Cas13靶向RNA。这一系列工具提供了处理突变的不同策略。鉴于RNA寿命相对较短,靶向RNA中与疾病相关的突变可避免基因组发生永久性变化。此外,使用CRISPR/Cas9介导的编辑难以对诸如神经元之类的某些细胞类型进行编辑,因而需要开发新策略来治疗影响大脑的破坏性疾病。

  在一项新的研究中,美国麻省理工学院麦戈文脑科学硏究所研究员、布罗德研究所核心成员张锋(Feng Zhang)及其团队如今开发出一种称为RESCUE(RNA Editing for Specific C to U Exchange, C→U交换特异性的RNA编辑)的策略。相关研究结果于2019年7月11日在线发表在Science期刊上,论文标题为“A cytosine deaminase for programmable single-base RNA editing”。

CRISPR家族酶Cas13在发挥作用。Cas13(粉红色)是RESCUE平台的核心,它使用特定的向导分子(红色)靶向细胞中的RNA(蓝色)。图片来自Stephen Dixon

  张锋和他的团队,包括论文共同第一作者Omar Abudayyeh和Jonathan Gootenberg(如今都是麦戈文脑科学硏究所研究员),利用一种失活的Cas13将RESCUE引导到RNA转录本中的目标胞嘧啶碱基上,并使用一种新的、经过进化的、可编程的酶将不想要的胞嘧啶(C)转化为尿苷(U),从而指导RNA指令发生变化。RESCUE建立在REPAIR技术的基础之上,其中REPAIR也是由张锋团队开发的,可将碱基腺嘌呤转化为RNA中的肌苷(Science, 2017, doi:10.1126/science.aaq0180,详细新闻报道参见生物谷报道: 重磅!Nature和Science同日打擂台发表新型DNA/RNA碱基编辑器,可校正点突变)。

  RESCUE显著地扩展了CRISPR工具能够靶向的范围,包括蛋白中可修饰的位点,比如磷酸化位点。这些位点充当蛋白活性的开启/关闭开关,而且主要存在于信号分子和癌症相关通路中。

  张锋说道,“为了应对导致疾病的遗传变化的多样性,我们需要有一系列精确技术可供选择。通过这种新的酶并将它与CRISPR的可编程性和精确性相结合,我们能够填补工具箱中的关键空白。”

  将RNA编辑的范围扩大到新的靶标

  之前开发的REPAIR平台使用靶向RNA的 CRISPR/Cas13将一种称为ADAR2的RNA编辑器的活性结构域引导至特定的RNA转录物,在那里它能够将腺嘌呤(A)转换为肌苷(I),即A→I。由于不存在具有替代活性的天然编辑器,张锋和他的同事们进行了REPAIR融合,并在实验室中让它进行进化,直到它能够将胞嘧啶转换为尿苷,即C→U。

  RESCUE能够被引导至任何选择的RNA,然后通过这种平台中经过进化的ADAR2组分执行C→U编辑。张锋团队将这种新平台导入到人细胞中,结果表明这能够靶向人细胞中的天然RNA以及合成RNA中的24种临床相关突变。然后,他们进一步优化了RESCUE以减少脱靶编辑,同时最小程度地降低对在靶编辑的干扰。

  新靶标即将到来

  利用RESCUE扩展靶向能力意味着通过磷酸化、糖基化和甲基化等翻译后修饰调节许多蛋白的活性和功能的位点如今都可作为编辑的靶标。

  RNA编辑的一个主要优点是它的可逆性,相比之下,DNA水平上的变化是永久性的。因此,在需要暂时而非永久进行修饰的情况下,就可临时部署RESCUE。为了证实这一点,张锋团队发现在人细胞中,RESCUE能够靶向编码β-连环蛋白的RNA中的特定位点,从而导致β-连环蛋白活化和细胞生长的暂时增加,其中已知β-连环蛋白可发生磷酸化。如果永久性地发生这种修饰,那么这可能让细胞易于发生不受控制的细胞生长和癌变,但是在急性损伤时,暂时的细胞生长可能会刺激伤口愈合。

  这些研究人员还靶向一种致病性的基因变体,即APOE4。 APOE4等位基因一直是晚发性阿尔茨海默病产生的一种遗传风险因素。基因亚型APOE4与不是遗传风险因素的APOE2仅存在两个碱基的差别(在APOE4中,这两个碱基都是C,而在APOE2中,这两个碱基都是U)。张锋和他的同事们将风险相关的APOE4 RNA导入细胞中,结果发现RESCUE能够将它的特征性的两个碱基C都转化为U,因而将它转化为APOE2序列,从而将风险相关的变体APOE4 转化为非风险因素的变体APOE2。

  就像张锋实验室之前开发的CRISPR工具一样,他们计划广泛地分享RESCUE平台,以便促进更多的人使用这种平台,从而有助于将RESCUE 推向临床,并且能够让人们使用这种平台作为一种更好地理解致病突变的工具。这种平台将通过非营利性质粒库Addgene免费提供给人们用于开展学术研究。

相关文章

基因编辑具有治愈遗传性视网膜疾病的巨大潜力

全球约有200多万人因遗传性视网膜疾病失明,被称为“不可治眼病”、“家族的梦魇”,其中以视网膜色素变性(Retinitispigmentosa,RP)最为常见,缺乏有效治疗。基于CRISPR的基因编辑......

科学家开发能锁定小型癌症相关突变的新型基因编辑工具

构成促癌基因的代码中只要改变一个字母就会明显影响肿瘤的侵袭性或癌症患者对特定疗法的反应,近日,一篇发表在国际杂志NatureBiotechnology上题为“Generationofprecision......

NatureBiotech:新工具可预测基因编辑的成功率

自2012年CRISPR-Cas9技术问世以来,基因编辑便驶入了快车道,取得了一系列新突破。如果将CRISPR-Cas9比作能够破坏目标基因的分子剪刀,那么baseeditor(碱基编辑器)可以称为分......

Nature审稿意见22页,他们答复98页,通过!

2021年11月,李国田决定向《自然》投稿。“这是我们第一次投稿《自然》杂志,第一稿算是‘投石问路’,能给一个修改机会就算成功!”他的博士生沙干说。《自然》审稿人还真的给了修改机会——长达22页的建议......

人工病毒载体可用于基因编辑

《自然·通讯》30日报告了一种制作人工病毒样载体的方法,所制载体能进入人类细胞执行特定任务,如基因编辑。这种大容量、可定制化的纳米材料为未来基因疗法和定制化医疗带来新希望。病毒是一种高效的生物“机器”......

科学家利用基因编辑与耐抗生素细菌作斗争

埃克塞特大学的研究人员利用CRISPR-Cas基因编辑系统创造了一种针对抗生素抗性基因的质粒,有效地预防和逆转了抗性。该工具在实验室实验中显示出有希望的早期结果,开辟了一种潜在的新方法来对抗抗菌素抗性......

基因编辑细胞治疗大鼠心力衰竭

据英国《新科学家》杂志网站20日报道,美国科学家利用CRISPR编辑的人类心脏细胞注射到罹患慢性心力衰竭的大鼠体内,结果表明,这一方法能使更多大鼠存活,并延长其运动时间,相关技术的人体试验可能在202......

下一级的CRISPR基因编辑技术不再需要病毒帮助

事实证明,改性病毒是将CRISPR/Cas9基因编辑材料送入细胞核的便捷方式--但它们价格昂贵,难以扩展,而且有潜在毒性。现在,研究人员已经发现了一种非病毒方法,可以更好地完成这项工作。大多数人都听说......

首个植物基因编辑安全证书!

4日,从山东舜丰生物科技有限公司(以下简称舜丰生物)获悉,农业农村部发布《2023年农业用基因编辑生物安全证书批准清单》,下发全国首个植物基因编辑安全证书,该证书由舜丰生物获得。基因编辑是世界生物育种......

特殊的细胞穿透肽为下一代基因编辑技术提供了可能

研究人员已经开发出一种高效的新基因编辑方法,它使用基于病毒的蛋白质片段。该方法可用于提高用于治疗癌症和其他疾病的现有细胞和基因疗法的水平。利用CRISPR技术简单而高效地修改基因已经彻底改变了生物医学......