12月4日,中国空间站的水稻和拟南芥实验样品,随神舟十四号载人飞船返回舱返回地面。至此,中国科学家在国际上首次完成了水稻“从种子到种子”全生命周期培养实验。按计划,水稻实验样品计划在北京交接后,将转运至上海实验室中做进一步检测分析。

科研人员对返回科学实验样品进行分解与固化。中国科学院空间应用中心供图

空间水稻原生稻和再生稻图片,显示空间稻穗与颖壳张开的表型。中国科学院分子植物科学卓越创新中心供图
太空里种主粮
水稻是人类主要的粮食作物,养活了世界上近一半的人口,也是未来载人深空探测生命支持系统的主要候选粮食作物。利用空间微重力进行水稻育种也是空间植物学研究的重要方向之一。种子既是人类的粮食,也是繁殖下一代植物的载体,人类要在空间长期生存,就必须要保证植物能够在空间完成世代交替,成功繁殖种子。
但是,之前国际上在空间只完成了拟南芥、油菜、豌豆和小麦从种子到种子的培养,而主要粮食作物水稻,此前没有能够在空间完成水稻全生命周期的培养。
在我国空间站生命科学项目中,中国科学院分子植物科学卓越创新中心研究员郑慧琼团队承担了“微重力条件下高等植物开花调控的分子机理”,在国际上首次开展水稻从种子到种子全生命周期培养实验。同时,由于开花是结种子的前提,研究团队还利用模式植物拟南芥,系统地研究了空间微重力对植物开花的影响。
在轨“养”了120天
从2022年7月29日注入营养液启动实验,至11月25日结束实验,该项目共在轨开展实验120天,完成了拟南芥和水稻种子萌发、幼苗生长、开花结籽全生命周期的培养实验。
期间,航天员在轨进行了三次样品采集,包括9月21日孕穗期水稻样品采集,10月12日拟南芥开花期样品采集和11月25日水稻和拟南芥种子成熟期样品采集。
采集后,开花或孕穗期样品保存于-80℃低温存储柜中,种子成熟期样品保存于4℃低温存储柜,并于12月4日将随神舟十四号返回地面。
本次空间项目,在轨完成了水稻从种子萌发、幼苗生长、抽穗和结籽全生命周期的培养实验并通过获取图像进行分析;完成了剪株后空间再生稻成功培育并结出了成熟的种子(二茬);完成了拟南芥种子萌发、幼苗生长和不同三个生物钟调控的开花关键基因对空间微重力响应的图像观察分析并在轨采集了样品。

水稻在问天舱生命生态实验柜通用生物培养模块中完成从种子到种子全生命周期不同发育阶段代表性图片。图像上的数字表示注入营养液启动实验后的天数。中国科学院分子植物科学卓越创新中心供图
已有一些新发现
通过对空间获取的图像分析,并与地面对照比较,科研人员发现,空间微重力对水稻的多种农艺性状,包括株高、分蘖数、生长速率、水分调控、对光反应、开花时间、种子发育过程以及结实率等有多方面的影响。
实验初步发现,在微重力环境下,水稻的株型在空间变得更为松散,主要是茎叶夹角变大;矮杆水稻变得更矮,高秆水稻的高度没有受到明显的影响。此外,生物钟控制的水稻叶片生长螺旋上升运动在空间更为凸显。
科研人员还发现,水稻空间开花时间比地面略有提前,但是,灌浆时间延长了10多天,大部分颖壳不能关闭。对于具体原因,科研人员表示,开花时间和颖壳闭合均是水稻的重要农艺性状,二者在保障植物充分的生殖生长是获得高产优质种子方面都有重要作用,此过程受到基因表达的调控,后续他们还将对返回样品作进一步分析。
与此同时,他们还在空间站成功开展了再生稻实验,并获得了再生稻的种子。科研人员发现,水稻从剪株20天后就可以再生出了2个稻穗,这说明空间狭小的封闭环境中再生稻是可行的,为空间作物的高效生产提供了新的思路和实验证据,该技术可以大大增加单位体积中的水稻产量,也是国际上首次在空间尝试的再生稻技术。

空间再生水稻的过程图像,图中的时间为剪株后的天数。中国科学院分子植物科学卓越创新中心供图
此外,科研人员还首次对空间生物钟调控光周期开花的关键基因进行了研究。利用基因突变和转基因的方法,他们构建了三种不同开花时间——提前开花,延迟开花和正常开花(野生型)的拟南芥。
通过对空间拟南芥生长发育的图普观察与分析,他们发现,开花关键基因对微重力的响应与地面有明显的差异,其中在地面提早开花的拟南芥在微重力条件下开花时间也大大的延长。此外,生物钟基因突变后,空间拟南芥的下胚轴过度伸长,说明生物钟基因表达对于维持拟南芥在空间生长的正常形态和适应空间环境非常重要,为今后利用改造开花基因来促进植物适应空间微重力环境提供了新方向。
科研人员表示,后续研究团队将进一步利用返回材料对拟南芥适应空间环境的分子基础进行深入解析。



科研人员对返回水稻和拟南芥科学实验样品进行分解与固化。中国科学院空间应用中心供图
中国科学院遗传与发育生物学研究所研究员傅向东与福建农林大学和浙江理工大学的合作者首次揭示了通过精准调控染色质三维结构,能协同提升水稻产量和氮肥利用效率,为解决长期困扰现代农业的“高投入、高产出”难题提......
当一粒种子落入土壤,它如何在贫瘠的环境中找到生存之道?水稻等作物如何精准感知土壤中的氮素变化,长久以来都是未解之谜。中国科学家近日破解了水稻感知土壤氮素的"密码"——通过钙信号串联......
水稻作为最重要的粮食作物,为超过半数的世界人口提供主食。然而,水稻黑条矮缩病毒(SRBSDV)等病毒严重危害水稻生长,威胁粮食生产安全,解析病毒—水稻互作的分子机制对水稻病毒病的防控具有重要意义。近日......
7月30日,《自然—遗传学》在线发表了扬州大学教授左示敏团队联合中国农业科学院植物保护研究所、河北师范大学等单位克隆的水稻抗纹枯病优异基因SBRR1-R。此基因蕴藏在水稻自然品种中,且具有显著育种价值......
近日,中国农业科学院植物保护研究所作物病毒病害监测与防控创新团队在《植物生物技术》(PlantBiotechnologyJournal)上在线发表了研究论文。该研究通过单细胞转录组测序揭示了水稻在感染......
记者杨舒从中国农业科学院生物技术研究所获悉,该所作物耐逆性调控与改良创新团队日前联合国内外研究机构,构建了首个水稻的多器官单细胞多组学图谱,系统解析了水稻不同细胞类型的功能及其对复杂性状的调控作用,有......
广东省农业科学院水稻研究所副研究员谭健韬/研究员刘琦团队与华南农业大学教授祝钦泷团队合作,研究开发出植物精准碱基编辑器实现水稻重要农艺性状蛋白功能活性的梯度调节。近日,相关成果发表于《先进科学》(Ad......
水稻作为起源于热带或亚热带的粮食作物,其生长发育对低温胁迫敏感。伴随全球气候变化加剧,极端低温事件发生频率显著上升,发掘耐冷基因并解析分子机制,有利于水稻高产稳产遗传改良。目前,利用自然群体挖掘的水稻......
强烈的厄尔尼诺事件能够诱发全球多个粮食产区的同步减产,因此被认为是威胁全球粮食生产稳定性的重要因素。以往研究普遍认为,厄尔尼诺是通过与粮食产区气候要素(温度、降水等)的遥相关导致该产区的作物减产。近日......
华中农业大学作物遗传改良全国重点实验室、生命科学技术学院教授李一博带领的团队,从自然环境中筛选出水稻耐高温基因QT12,为水稻在高温环境下实现稳产提质及育种提供新策略。相关成果于北京时间4月30日晚发......