核能的发展与安全性提升,离不开新型核材料的出现以及对于传统核材料的改进。自2011年福岛核事故以来,人们对反应堆包壳材料提出了事故容错性的迫切需求,即在核安全事故发生后的一段时间内,包壳材料能够保持其结构与功能的完整性,进而为后续的救助与修复工作争取时间。近期,中国科学院宁波材料技术与工程研究所核能材料工程实验室(筹)科研人员应邀在材料领域期刊Scripta Materialia上发表观点评述,分析了碳化硅纤维增强碳化硅复合材料核用存在的关键问题,以及核能材料研发过程材料基因组技术所能发挥的作用。

  新型的事故容错核燃料(Accident Tolerance Fuel,ATF)包壳材料要求其在原有力学性能、抗辐照性能和抗腐蚀性能的基础上,进一步提升在高温水蒸气环境下的抗氧化性能以及对裂变气体的容纳性能。碳化硅纤维增强碳化硅陶瓷基复合材料(SiCf/SiC)具有高强度、耐高温、耐腐蚀、耐辐照等特性,被认为是应用于事故容错核燃料包壳、面向高温辐照环境的结构组件和散裂靶结构单元、核聚变堆流道插件等部件的最佳候选核用材料之一。目前核用SiCf/SiC复合材料在中子辐照环境下最大的难题在于纤维与基体之间的中间层问题。由于纤维和基体之间结晶程度的不同和中间层界面耐辐照能力的限制,低剂量中子辐照会造成复合材料内部产生大量的微裂纹,直接导致辐照后力学性能和导热能力的下降。观点评述对热解碳(Pyrolytic Carbon,PyC)、六方氮化硼(Hexagonal-BN)等传统界面层材料进行了详细分析,如其耐辐照性能较差或为中子毒物,且容易被氧化,进而导致复合材料在辐照和氧化环境下的服役稳定性不足。评述首次提出利用三元层状陶瓷MAX相材料作为中间层的选型。MAX相材料兼具金属和陶瓷的特性,耐辐照性能、抗氧化性能和断裂能吸收能力优异,可作为一种全新的纤维增韧陶瓷基复合材料界面层。然而,由于该类材料制备难度高,目前国内外尚无在纤维表面制备MAX相界面层的相关报道。以往,宁波材料所核能材料工程实验室(筹)介绍了近期开发的一种以高温离子液体为介质、基于原位反应的纤维表面MAX相涂层制备工艺,首次在碳纤维表面和碳化硅纤维表面制备出了均匀的、厚度可控的MAX相涂层。涂层内部有一层较薄的多晶TiC过渡层,外部为MAX相Ti2AlC层。通过改变反应条件,可以有效控制涂层厚度和表面形貌。研究表明,在高温空气氧化和水蒸气氧化的条件下,该涂层均可以为碳纤维与碳化硅纤维提供有效的抗氧化保护。该工作一经发表即引起了国际同行的广泛兴趣,美国橡树岭国家实验室核聚变材料研究者Takaaki Koyanaki在第十八届国际核聚变材料大会上专门对本工作进行了介绍。

  针对核能产业对新型ATF包壳材料的迫切需求,缩短该类材料的研发周期,宁波材料所核能材料工程实验室(筹)理论研究团队提出了使用材料基因组方法对ATF包壳材料进行优化设计。在该设计策略中,研究人员针对材料从其微观组织结构预测宏观性能的困难,通过捕捉不同尺度下理论模型的研究重点,建立起了一套以各尺度算法间参数传递为中心的多尺度耦合计算方案(如图2)。在该方案的实施过程中,研究人员首先在纳观尺度上利用第一性原理方法研究单晶材料的力学与能量参数,其计算结果同时也用于拟合分子动力学使用的势能力场。在微观尺度上,利用分子动力学计算微观缺陷在材料内的分布、运动行为以及对材料性能的影响,将结果传递为相场与有限元计算。在介观尺度上,使用结合了晶体塑性理论模型的相场方法,模拟冷轧与热加工过程中的晶粒演化过程,找出加工工艺参数对材料晶粒分度等微观组织结构的影响。在宏观尺度上,通过有限元模拟实现对多晶材料宏观力学、热学性能的预测,最终得到应力应变曲线、温度场应力场分布等关键工程参数。整个计算方案通过将数据从低尺度向高尺度的传递,解决了不同尺度下理论计算的耦合问题,实现了运用材料基因组方法对宏观热力学性能的有效预测。

  上述观点评述文章发表在Scripta Materialia特邀核能材料专刊上。宁波材料所研究员黄庆为本期专刊的客座编辑之一。以上研究得到了国家重点研发计划、国家自然科学基金以及中科院战略先导科技专项的资助。

图1.碳化硅纤维表面MAX相涂层的形貌

图2.材料基因组思想下先进核能包壳材料的多尺度模拟耦合方案

相关文章

陈小龙:20余年坚守创新“开路”国产碳化硅

“要么做真正原创性的基础研究,要么做意义重大、促进产业发展的研究,不能做一些两不靠的工作,这些意义不大,我们的理想是两者兼顾。”这是中国科学院物理研究所研究员陈小龙一直以来所坚守的信念。陈小龙长期从事......

第三代半导体龙头共话“换道超车”

以碳化硅、氮化镓为代表的宽禁带半导体材料,被称为“未来电子产业基石”。近日,上交所科创板新质生产力行业沙龙第二期聚焦第三代半导体产业领域,汇聚华润微、芯联集成、天岳先进等3家半导体头部企业,及多家证券......

国产碳化硅进击8英寸工艺节点“掘金”窗口期步入倒计时

在新能源汽车、光伏、储能等市场持续推动下,国产碳化硅产业商业化持续推进,获得国际功率半导体巨头青睐和结盟,积极追赶更为先进的8英寸工艺节点,碳化硅产品价格有望步入“甜蜜点”。另一方面,碳化硅产业呈现跑......

天科合达成为英飞凌国产碳化硅材料供应商

5月3日,北京天科合达半导体股份有限公司(以下简称天科合达)与英飞凌公司签订了一份长期供货协议,天科合达将为英飞凌供应用于生产碳化硅(SiC)半导体的6英寸碳化硅材料,其供应量占英飞凌未来长期预测需求......

中科大等实现基于碳化硅中硅空位色心的高压原位磁探测

中国科学技术大学郭光灿院士团队在碳化硅色心高压量子精密测量研究中取得重要进展。该团队李传锋、许金时、王俊峰等与中科院合肥物质科学研究院固体物理研究所高压团队研究员刘晓迪等合作,在国际上首次实现了基于碳......

浙大成功生长出50mm厚6英寸碳化硅单晶

据浙江大学杭州国际科创中心发布,近日浙江大学杭州国际科创中心先进半导体研究院-乾晶半导体联合实验室和浙江大学硅材料国家重点实验室在浙江省“尖兵计划”等研发项目的资助下,成功生长出厚度达到50mm的6英......

日本科研团队发现新的超导形成机制

东京大学和东京工业大学在合作研究中发现,通过在碳化硅(SiC)晶体基板表面制作单一原子层的石墨烯,然后向其上面蒸镀钙(在真空中层积原子)并进行加热处理,制作出的样品在冷却后具备超导特性。相关论文发表在......

中电科二所在碳化硅激光剥离技术方面取得进展

日前,中国电子科技集团公司第二研究所宣布碳化硅激光剥离设备研发项目通过专家评审论证,正式立项、启动。碳化硅半导体材料具有宽禁带、高热导率、高击穿场强、高饱和电子漂移速率、化学性能稳定等优点,对电动汽车......

中国科大郭光灿团队等在碳化硅色心自旋操控研究新进展

中国科学院院士、中国科学技术大学教授郭光灿团队在碳化硅色心自旋操控研究中取得重要进展。该团队李传锋、许金时等人与匈牙利魏格纳物理研究中心教授AdamGali合作,在国际上首次实现了单个碳化硅双空位色心......

攻关克难宁波材料所碳化硅先驱体研究获进展

碳化硅(SiC)陶瓷具有耐高温、耐腐蚀、耐磨损、耐辐照、强度大、硬度高、热膨胀率小等优异的综合性能,在能源安全领域扮演着重要的角色。目前陶瓷材料包括SiC陶瓷的成型主要采用传统的粉末方法,即从微粉制备......