1包衣锅制备微丸 此法是比较传统的制备方法。将药物与辅料粉末混合均匀,加入粘合剂制成软材,过筛制粒,于包衣锅中滚制成小球,包衣后即得所需微丸。如肠溶红霉素微丸的制备可采用此法:将红霉素与辅料充分混合,湿法制粒,于包衣锅中以一定转速滚制成丸,干燥后再包肠溶衣即得。 为了改善微丸的圆整性,可采用"丸模法":以蔗糖或淀粉细粒为"丸模"(空白丸芯),以水为粘合剂,加入药物与辅料滚制成含药丸芯,干燥后再重复进行此操作至大小合适的微丸,再包上薄膜衣即可。
2沸腾床制粒包衣法制备微丸 将药物与辅料置于流化床中,鼓入气流,使二者混合均匀,再喷入粘合剂,使之成为颗粒,当颗粒大小满足要求时停止喷雾,所得颗粒可直接在沸腾床内干燥,微丸的包衣过程也可同时进行,即制粒、干燥、包衣一步完成。在整个过程中,微丸始终处于流化状态,可有效地防止微丸在包衣过程中发生粘连。主要设备为Wurster装置。其优点为:① 缩短操作时间;② 所得微丸大小均匀、圆整,粒度分布窄、无粘连;③ 微丸衣层厚度均匀。国外主要设备有GPCG-5型流化床、Aeromatic多用流化床及Vecto-Freund流化床等。
3 离心造粒法制备微丸 将母核输入到旋转的转子上,利用离心力与磨擦力形成母核的粒子流,再将药物与辅料的混合物及包衣液分别喷入其中,颗粒最后滚制成圆整型较好的微丸。
4 液相中制备微丸 在液相中高速搅拌含药颗粒,制成了维生素C微丸,所得微丸成球性好,粒度分布窄。 我国于80年代初引进了一项新技术:液相中药物球形结聚技术,即药物在溶剂中结晶的同时发生聚结制备微丸。它又可分直接球形结聚法(将药物微粒直接混悬于液相中发生结聚)和结晶球形结聚法(药物先溶解,再结晶,在结晶的同时发生凝聚)。此技术的优点为:① 整个操作过程在液相中完成,操作简单,仪器要求低;② 缩短了操作时间;③ 实验条件(辅料、方法)选择范围大。
5 振动喷嘴装置法制备微丸 将熔融的丸芯通过振动喷嘴滴入冷却液中制备一定大小的微丸。微丸大小取决于喷嘴的口径、振动频率及振幅。丸芯必备的条件为:① 室温为固态,加热为液态;② 丸芯不溶于冷却液,不扩散;③ 密度大于冷却液。
6 挤出-滚圆法制备微丸 挤出-滚圆法(extrusion-spheronization)是指将药物、辅料粉末加入粘合剂混合均匀,通过挤出机将之挤成条柱状,再于滚圆机中将圆柱形物料切割,滚制成大小均匀、规整的球形,最后进行干燥、包衣。 此法为一种较新型的制丸方法,国外文献常可看到,用此法所得颗粒大小均匀、粒度分布窄、药物含量均匀。所需装置主要有挤出机和滚圆机。挤出机可使捏合后的湿物料挤成圆柱形,滚圆机可使挤出圆柱形物料滚制成球形。它具有:造粒时间短(一批料只需3分钟)且成品率高(成品率基本可达100%)无需筛选,颗粒直径可调节,球粒内组分分布均匀等优点。
7 熔融法制备微丸 熔融法(melt pelletization)是指通过熔融的粘合剂(binder)将药物、辅料粉末粘合在一起制成微丸,再将微丸包衣制得。此法尤适于对水、热不稳定的药物。用此法可得到粒径为0.5~2.0 mm的微丸。熔融制粒法又可分为熔融高速搅拌混合制粒法和流化熔融制粒法。所用粘合剂通常熔点小于120℃并且能够抵抗胃肠道酶的破坏作用。
熔融高速搅拌混合制粒法(melt pelletization in a high shear mixer)主要步骤为:在一个高速搅拌器中,在操作温度高于粘合剂熔点的条件下,将熔融的粘合剂与固体药物粉末进行搅拌、粘合而成颗粒或微丸。
流化熔融制粒法(fluidized melt-granulation)步骤为:向母核(nucleus)、药物、辅料粉末混合物中通入热空气,加热至母核熔点以上,同时保持混合物颗粒处于悬浮状态,此时在熔融的母核与粉末之间产生粘合力(adhesion),随着粉末不断加入,粒子越来越大至一定粒度,然后再通入室温空气冷却即可。孕石爱雄等研究了其造粒机制及物料的物化性质对粒子成长的影响,发现:熔融母核的粘度越小,粒子成长越快;母核的形状、大小影响粒子的形状、大小;在母核与被造粉粒间存在最佳混合比并且此混合比取决于它们的表面积大小。