发布时间:2020-07-20 17:48 原文链接: 微卫星DNA分子标记及其应用(一)

微卫星(Microsatellite,MS)又称短串联重复(Short Tandem Repeats,STR)或简单序列重复(Simple Sequnce Repeat,SSR),是指基因组中以少数几个核苷酸(多数为2-4个)为单位多次串联重复组成的长达几十个核苷酸的序列。其中最常见的是双核苷酸重复,如(AC)n、(TG)n等,微卫星DNA广泛分布在真核生物的基因组中,大约每隔10-550kb就存在一个微卫星。微卫星DNA由于具有特异性的PCR扩增、多态信息容量(PIC)高、引物通用性好、突变率高、共显性等特点,已经被广泛应用。

1.微卫星DNA的特点及分类

微卫星DNA具有丰富的多态性,主要表现在核苷酸重复单位数目的多态性和重复序列中核苷酸的替换多态性。一般认为,一个微卫星DNA核心序列重复数目越高,其等位基因数目也就越多,多态性就越丰富。微卫星DNA遵循孟德尔遗传规律,能够稳定地从上一代传给下一代,且等位基因间呈现共显性遗传。除此以外,微卫星标记还具有DNA用量少、反应速度快、操作简易、结果重复性好等特点。

根据重复结构的不同可将微卫星DNA分为3类:完全重复型(perfect),单一序列单元无中断或无颠倒;不完全重复型(imperfect),单一序列单元有中断或有颠倒;混合型(compound),多个序列中单位有或无中断和有或无颠倒的混合。一般说来,微卫星DNA的重复序列两侧都有物种特异性的保守序列,所以,通过设计引物对基因组DNA进行PCR扩增、琼脂糖凝胶电泳(或聚丙烯酰胺凝胶电泳)和放射自显影(或银染),就可以检测到在简单重复序列重复单位数不同的DNA区域的多态性,这就是微卫星DNA分子标记。

2.微卫星分子标记方法的优点

微卫星在基因组中是均匀分布的。Winter 等人的研究表明, 除着丝粒及端粒区域外, 染色体的其他区域均广泛分布有微卫星位点。Litt 和Luty以及Weber 和May各自用热稳定Tag 酶的PCR 方法证明, 微卫星具有丰富的多态性。用微卫星作为遗传标记与其他DNA分子标记(包括RFLP、RAPD 和小卫星DNA等) 相比具有以下优点。

2.1 微卫星标记杂合程度高

由于微卫星位点的等位基因数相当多,因而杂合程度高,多态信息含量(PIC)大,在区分亲缘关系极近的个体(群体)时的效率比PFLP高。

2.2 微卫星位点可通过PCR扩增

由于小卫星的等位基因一般比较大,在PCR扩增时有一定局限性。而使用微卫星进行PCR扩增,其使用样品数量少。另外,由于微卫星序列较短,即使降解的DNA也有可能包含足够用来扩增的微卫星位点,这一特点使那些保存差的样品也可能成为有价值的研究材料。

2.3 通用性与保守性

微卫星DNA所在区域在生物的基因组中是比较保守的,某一物种的微卫星引物可在相关密切的物种中使用,这使得减少获取微卫星的工作量和加快比较基因组作图的工作进度成为可能。

2.4 共显性遗传

微卫星DNA呈孟德尔共显性遗传模式,可以区别纯合显性个体和杂合显性个体,这为遗传研究提供了更多的可供分析的信息。

2.5 微卫星的多态性

多数SSR无功能作用,增加或减少几个重复序列的频率高,因而在品种间具有广泛位点变异,比RFLP及RAPD分子标记更具有多态性。

2.5.1 微卫星突变

微卫星的突变率很高,从而产生了很多等位基因,这就导致了微卫星的高度多态性,一般认为,微卫星丰富的多态性是微卫星不稳定性(microsatellite instability,MI)的表现。微卫星的突变速率在不同物种以及同一物种的不同位点甚至在同一位点的不同等位基因间都存在着很大的差异。在哺乳动物中,大多数的微卫星的突变率估计为每世代10-6-10-2人类家系的微卫星平均突变速率为10-4;黑腹果蝇受控雌性系中的突变率为每个位点10-6左右。当微卫星被表达在缺乏有效错配修复系统的寄主中时,其不稳定性要比正常时高(5-10)×103左右。

2.5.2 微卫星突变的产生机制

微卫星突变的遗传学机制现在尚不清楚,目前大多认为微卫星的不稳定性或者与DNA重组过程中的不等交换有关,或者与DNA复制过程中的“滑链错配”有关。

Johnson和Pupko等认为,两条染色体间的DNA重组过程中发生的不等交换以及基因转换可能是引起微卫星多态性产生的主要原因。而Levinson等认为在DNA复制合成的过程中,发生了局部解链,有微卫星存在的区域新生链和模板链相对滑动,产生错配,使得一个或者几个重复单位形成环状未能参与配对,从而导致了微卫星多态性的产生。


相关文章

荧光传感器实时监测DNA损伤及修复

荷兰乌得勒支大学研究人员开发出一款全新荧光传感器,可在活细胞乃至活体生物中实时监测DNA损伤及修复过程,为癌症研究、药物安全测试和衰老生物学等领域提供了重要的新工具。相关成果发表于新一期《自然·通讯》......

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

拿破仑的军队是如何灭亡的?DNA揭示令人意外的疾病因素

1812年,法国皇帝拿破仑一世从俄罗斯莫斯科撤退时,其大部分军队因饥饿、疾病和寒冷的冬天而损失殆尽。如今,对这撤退途中丧生的30万士兵的部分遗骸的DNA的分析发现,两种未曾预料到的细菌性疾病很可能增加......

DNA揭示拿破仑军队“全军覆没”元凶

1812年夏,法兰西皇帝拿破仑·波拿巴率50万大军入侵俄罗斯帝国。然而到12月时,这支军队仅余零星残部。历史记载将此次“全军覆没”归因于饥寒交迫与斑疹伤寒。但一项新研究表示,从士兵牙齿中提取的DNA,......

“DNA花朵”微型机器人可自适应环境变化

美国北卡罗来纳大学研究团队研发出一种名为“DNA花朵”的微型机器人。这种机器人具有独特的自适应环境变化能力,能够像生物体一样,根据周围环境改变形状和行为。“DNA花朵”机器人由DNA与无机材料结合形成......

DNA搜索引擎MetaGraph研发成功

瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

科学家开发出超大片段DNA精准无痕编辑新方法

基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......

在动物大脑中直接修复DNA——神经科学研究新突破系列之一

神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......