发布时间:2020-10-13 20:35 原文链接: 微波光子信号的产生(一)

伴随微波射频通信技术的发展与光通信技术的日益成熟,两者间的相互渗透成为一种需要并逐步成为可能。在现有器件条件下,在100GHz带宽范围内,电、光模拟信号可以很方便的自由转换,在光域对模拟信号进行选频滤波,放大也可以方便地实现,这就为微波光子(Microwave Photonics)技术出现提供了基础。微波光子技术的应用主要体现在微波信号产生、用于双向无线通信、射频广播、雷达系统等的微波光纤传输以及微波信号处理等方面。这些应用的主要思想是把微波射频信号调制在光载波上并通过光纤网络进行传输分配,这样做的优点在于可以利用光纤重量轻、低损耗、廉价、抗电磁干扰等特点构建一个高性能,低成本,易于安装维护的光子微波系统[1]

对于微波通信和光子微波技术来说,优质的微波信号源是一切微波领域应用的基础,而传统的电微波信号产生方式有很多不足与局限。比如,在上世纪60年代以前曾经广泛应用的微波振荡器几乎都是由微波电真空器件如反射速调管、磁控管、行波管等构成。这类器件一般都存在工作电压高、供电种类繁多、功耗大、结构复杂、体积庞大等缺点,特别是其频谱纯度低、相位噪声大、频率稳定度差,已不适应电子技术的发展。50年代末期出现了晶体振荡器为主振、变容管倍频的微波倍频源,如石英晶体振荡器。但石英晶振只在低频时才具有少数几个高Q值共振模式,这就使它不能直接产生高频信号。加上倍频效率的限制,不易在较高频率下获得大的输出功率。这些都制约了它在频率可调的振荡器中的应用。在光子领域,由于激光器性能的提高和各种光子器件工艺的改善,在光域产生高品质的微波信号,特别是在高频段(微波/毫米波段)信号的产生方面显示出明显的优势。为此,总结现有的微波光子信号产生方法,发展更有效的光微波技术是一项有意义的工作。

1、微波光子信号的产生

1.1、电光调制法

最直接得到光微波信号的方法是利用电微波信号驱动电光调制器,在光载波两侧产生上、下两个边带,形成光微波信号。可用的电光调制器类型主要有马赫-曾德调制器(MZM)和电吸收调制器(EAM).在工作带宽方面,已报道的EAM具有95GHz的工作带宽,并仍有提高的潜力。在调制的灵活性上,MZM可以通过改变偏压和调制信号电压得到载波抑制或高次谐波(倍频)信号输出。如果MZM偏置在最小传输点,驱动正弦信号频率为f/2,可以得到频率为f的载波抑制输出。另一种选择是采用f/4的驱动信号,偏置在最大传输点并仔细调节驱动信号幅度,可以得到抑制一阶边带的信号输出[2]。这些被调制信号的边带在光电探测器(PD)上发生拍频,产生所需要的微波/毫米波频段的信号。调制法的信号产生、传输和检测原理框图如图1所示。

调制法最明显的优势是可以直接得到光微波信号,但是驱动信号的质量会直接影响所得到的光微波信号质量。

1.2、外差法

外差法是使用两个具有固定频差的激光器混频后,通过PD检测,产生频率为激光频差微波信号的一类方法,如图2所示。

应该说在1.1中所介绍的直接调制法调制所得的光微波信号在检测时所产生的电微波信号也是利用了这个原理,不过这种情况中所用于拍出信号的各边带来源于同一光源,相互间具有特定的相位关系。外差法的优势在于,两路激光在光纤中传输时不会受到光纤色散的影响,所拍出信号的功率不会随传输距离而变化。另外一个好处是所产生信号的频率连续可调,并且可以获得很高的频率,探测器带宽是对所生成电信号频率的唯一限制。目前所报道的光探测的带宽已经可以达到300GHz以上[3]

考虑到激光器的自身制作工艺和外界温度影响等因素,激光器的输出一般都具有一定的线宽和波长波动,这会使产生的信号具有比较大的相位噪声和频率不稳定性。通常需要采用一些锁相措施,如光相位锁相环(Optical Phase-Locked Loop,OPLL)[3]和光注入相位锁相环(Optical Injection Phase-Lock Loop,OIPLL)[4]等技术加以控制。

除了使用两个独立的激光器进行外差,双波长激光器也是一种选择。已有报道的一种双模DFB激光器输出光频差为60GHz可用于产生微波信号[5],而另一种双区增益耦合的可调谐DFB激光器(two section gain coupled DFB-laser)可以实现20-64GHz的信号产生[6]。此外基于光纤结构的双波长激光器也有报道。一种基于光纤的DFB激光器利用刻有光纤布拉格光栅(FBG)的掺铒-镱光纤形成分布反馈区,可以在1-3GHz的范围内产生微波信号,调谐性由温度变化实现[7]。另一类可调谐双波长光纤激光器利用环内两个偏振态实现,可在100kHz-14GHz实现可调谐微波产生[8]


相关文章

微波光子融合光纤传感技术为癌症早筛带来新思路

近日,南方科技大学创新创业学院副院长、电子与电气工程系研究员邵理阳团队在生物医学检测技术领域的最新研究成果发表于《光电进展》。研究团队提出基于微波光子解调的双波长光纤激光生物传感系统,将肿瘤标志物检测......

南开团队实现片上光子毫米波雷达新突破

近日,南开大学智能光子研究院祝宁华院士团队与香港城市大学合作,基于兼容CMOS工艺的4英寸薄膜铌酸锂平台,首次设计并构建了集成薄膜铌酸锂光子毫米波雷达,实现了高达厘米级的距离与速度探测分辨率,同时在逆......

这场坍塌让全球“震颤”了9天

2023年9月16日,格陵兰岛Dickson峡湾一处高约1200米的山体坍塌,世界各地的地震学家记录到了奇怪的地震信号。近日,一项发表于《科学》的研究对信号的产生进行分析后指出,这次坍塌引发了巨大的海......

云南天文台等探测到超新星激波突破信号

中国科学院云南天文台研究员张居甲领衔的国际合作团队,成功捕捉到超新星SN2024ggi的爆炸激波冲破其外围致密星周物质的壮观瞬间。这一成果深化了科学家对超新星激波爆发物理机制的认识,并为揭示恒星晚期演......

《三体》中用太阳放大信号并不靠谱

当强大的电磁波从山顶的雷达天线穿破云层射向天空,巨大的能量使周围冰雪融化、鸟兽惊散……2月14日,改编自刘慈欣著名科幻小说《三体》的同名电视剧迎来大结局,剧中“红岸基地”发射电磁波信号的场景给观众留下......

全脑信号为痴呆症研究提供新思路

近日,《柳叶刀》旗下eBioMedicine在线发表了北京邮电大学教授刘勇团队与合作者的最新成果。该研究基于多中心功能磁共振影像,揭示了阿尔茨海默病(AD,俗称痴呆症)患者全脑信号的改变模式,并系统评......

一种跨物种信号通路的发现解开了蜱虫免疫和发育的谜团

在一项新的研究中,来自美国马里兰大学等研究机构的研究人员发现了节肢动物寄生虫和宿主之间的第一种物种间信号通路,在这种信号通路中,宿主动物血液中的分子触发了寄生虫的免疫和发育。这项新研究表明,当蜱虫摄入......

细菌信号转导网络复杂度的进化原理获揭示

近日,中国科学院南海海洋研究所研究员高贝乐团队以具有足够进化深度和生态多样性的弯曲菌门为研究对象,分析了六大信号转导系统在该门不同分支的进化过程及复杂度构建的方式,解析了细菌的信号网络从简单演变为复杂......

研究揭示中子星并合引力波信号新特征

原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488486.shtm近日,中国科学院紫金山天文台等国际合作研究团队利用双中子星并合过程中的引力波辐射特......

研究发现一条全新植物高温感知和信号传导途径

过去十年来,高温已经成为影响全球粮食供给的主要因素之一。尽管科学家对植物高温胁迫信号转导和耐热性形成分子机制已进行了广泛而系统的研究,但目前人们对高等植物如何感知热的原初信号事件及分子机制仍然知之不多......