盐碱、干旱、极端温度等非生物胁迫是严重影响植物生长和发育造成农作物减产的主要原因,所有这些胁迫都会引发细胞内活性氧(Reactive Oxygen Species,ROS)的大量积累,从而给植物带来次级氧化胁迫。碱蓬是一种能耐受高盐、叶肉质化的真盐生植物,具有高度的耐逆能力。从碱蓬中分离耐逆相关基因、分析其细胞内功能和调控途径,对于揭示极端生境植物的耐逆机制以及耐逆植物基因工程都具有重要意义。
最近,中科院微生物研究所夏桂先研究组利用酵母筛选体系,从碱蓬中分离了一个耐逆相关新基因SsOEP8。该基因编码叶绿体外膜蛋白,和植物对氧化胁迫的耐受性紧密相关。研究表明,SsOEP8基因的表达受H2O2、NaCl等多种非生物胁迫诱导,其中受H2O2诱导最为明显;在烟草BY-2细胞和拟南芥植株中表达SsOEP8能显著提高转基因细胞或烟草的抗氧化胁迫能力。
进一步研究发现,在拟南芥中异位表达SsOEP8可引起叶绿体向叶肉细胞边缘聚集,同时叶绿体运动相关蛋白的表达受到抑制,包括AtCHUP1(参与由微丝细胞骨架介导的叶绿体定位)等。在烟草BY-2细胞中异位表达SsOEP8基因可以引起微丝骨架的结构变化。
这些研究结果表明,SsOEP8可以通过改变依赖于微丝骨架的叶绿体的分布,抑制叶绿体中ROS的产生,从而增强对氧化胁迫的耐受性。
该研究的创新性之一在于首次发现叶绿体包膜蛋白与植物的抗氧化胁迫相关。研究结果已于2012年3月在Plant, Cell & Environment杂志发表。
叶绿体不仅是植物光合作用的重要场所,也在植物免疫中发挥关键作用。其中特异性定位于叶绿体的ALD1通过合成免疫信号分子哌啶甲酸(Pip)在局部与系统免疫中扮演重要角色。然而,ALD1的稳定性调控机制以及......
近日,哈尔滨工业大学韩晓军教授团队在人造细胞研究领域取得重要进展,模拟叶绿体在人造光合细胞中实现光控固碳。相关成果发表在《德国应用化学》。该成果有助于理解细胞工作机制,为构建具有复杂代谢功能的人造细胞......
光合作用作为地球生命活动的基础过程,在能量转换过程中不可避免地产生有害副产物即活性氧。这些活性氧破坏脂质膜结构,损伤膜整合蛋白尤其是光系统II核心蛋白,进而影响光合作用效率和植物生产力。因此,在环境条......
据日媒10月31日报道,由东京大学与日本理化学研究所科学家组成的一个研究团队称,他们使用仓鼠的细胞进行实验,实现了部分光合作用。光合作用是指植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时......
日前,西湖大学、西湖实验室特聘研究员闫浈团队在《细胞》上连续发表了两篇关联论文,报道了在叶绿体蛋白转运的动力机制上取得的又一重大突破——揭示了叶绿体蛋白转运的动力机制及其进化多样性,为该领域的研究开辟......
叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,......
RNA编辑广泛存在于植物的线粒体和叶绿体中。RNA编辑作为一种RNA转录后加工机制,对于调控基因表达具有重要意义。RNAC-U的编辑是胞嘧啶(C)经过脱氨转变为尿嘧啶(U)的过程。在此过程中,PPR(......
德国科隆大学的研究人员在NatureAging期刊发表了题为:InplantaexpressionofhumanpolyQ-expandedhuntingtinfragmentrevealsmecha......
叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......
叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......