发布时间:2015-11-02 13:12 原文链接: 微生物所等揭示植物基因沉默抵抗双生病毒新机制

  植物转录后基因沉默(PTGS)和转录水平基因沉默(TGS)是其抵抗病毒以及其它外源基因入侵的一套基于核酸的免疫系统。该系统能够监测、发现并及时清除病毒或外源基因的表达产物,产生对病毒等多种病原的抗性。近几年来,生物体如何在利用该机制抵抗病毒等病原入侵的同时,保持内源基因表达的稳定性是一个热点科学问题。

  在最近20年内,由烟粉虱传播的双生病毒(Geminivirus)引起的病害已经从由局部发生衍变成为最重要的全球性植物病害之一,严重危害玉米、小麦、棉花、木薯、番茄等重要作物和观赏植物。例如仅木薯花叶病毒病一项,每年在非洲撒哈拉地区造成的经济损失就高达12-23亿美元之巨。由于缺乏有效抗病基因及种质资源,目前对双生病毒病害尚无环保高效的防治方法, 仍主要依赖通过对介体昆虫的化学防治来实现病毒的预防与控制。中国科学院微生物研究所叶健青年研究组于2014年双生病毒与寄主植物、传毒介体昆虫烟粉虱三者互作取得重要进展的基础上(Li et al., Plant Cell 2014),同美国洛克菲勒大学教授蔡南海实验室合作,从植物对木薯花叶病毒的感病基因入手,在植物如何抵御双生病毒感染和病毒与植物基因沉默互作研究中,又鉴定了两类植物对木薯花叶病毒的易感基因,揭示了高等植物中保守的抵抗双生病毒病害的新机制,相关的工作已经发表在PLoS Pathogens 和Scientific Reports 上。这两类双生病毒的植物感病基因的发现,为发展广谱高效的植物抗双生病毒病害策略奠定了理论基础,并为通过基因组编辑技术获得增强作物抗病性提供了有效的分子靶标。

  该团队研究人员利用遗传学、细胞学、分子生物学和病毒学等研究手段,首次发现叶型发育干细胞决定因子AS2是双生病毒易感基因,并且在负调控植物细胞质PTGS中发挥重要功能。他们发现AS2参与了植物细胞质mRNA decapping途径,抑制PTGS和植物对双生病毒的抗性。植物内源基因转录具有发生PTGS的潜在的风险,细胞质mRNA decapping途径在真核生物中非常保守,是重要的RNA降解途径,具有抑制PTGS的功能。而双生病毒通过促进AS2转录激活、AS2核质穿梭和增强decapping等策略,抑制植物PTGS的发生,增强其致病性。研究成果为发展高效防治双生病毒病害提供了新的靶点(PLoS Pathogens 2015, 11:e1005196),叶健为该文的第一作者和共同通讯作者,微生物所研究员方荣祥、叶健课题组的孙艳伟、赵平芝为共同作者。

   除PTGS外,TGS也对双生病毒抗性起到重要作用。该团队研究人员发现本生烟草(Nicotiana benthamiana)组蛋白甲基转移酶NbKYP和DNA甲基转移酶NbCMT3是TGS途径的重要因子,通过对双生病毒基因组进行甲基化修饰,限制病毒复制和转录等事件的发生。在NbKYP低表达的本生烟草中,植物和双生病毒基因组的CG和CHG甲基化均大幅度的降低,揭示了NbKYP在TGS中的新特点。研究发现本生烟草也存在负调控TGS的机制,而木薯花叶病毒可以通过激活负调控因子NbRAV2抑制NbKYP转录,从而抑制了本生烟草TGS的发生,进而促进了病毒的复制。相关论文已经被Scientific Reports 接收,叶健为该文的通讯作者,叶健课题组的孙艳伟和马永焕为共同第一作者,姚香梅为共同作者。

  这两项研究工作得到了中国科学院战略性先导科技专项(B类)-“作物病虫害的导向性防控项目(XDB11040300)”、国家自然基金委优秀青年项目(31522046)和植物基因组学国家重点实验室经费的资助。

  双生病毒“劫持”细胞质RNA降解途径抑制植物转录后基因沉默并促进病毒复制。(Ye. PLoS Pathogens 2015)

  双生病毒“劫持”植物细胞核组蛋白甲基转移酶KYP介导的转录水平基因沉默并促进病毒复制。

相关文章

人类肠道中的微生物能将膳食纤维转化为额外热量

在人体肠道深处栖息着熙熙攘攘的微生物群落,每种微生物都在食物消化过程中扮演特定角色。其中存在一种能产生甲烷的特殊微生物,美国亚利桑那州立大学最新研究表明,这种产生甲烷的微生物可能影响人体从摄入食物中提......

科学家阐明生态系统功能的微生物维持机制

近日,东北林业大学生态学院团队在生态系统多功能性的微生物维持机制方面取得新进展。该研究揭示了土壤微生物通过调整高产-资源获取-胁迫耐受生态对策来应对干旱的内在机制,从微生物生态对策的新视角阐明了生态系......

复旦大学粟硕团队绘制全球首个哺乳动物高分辨率微生物与耐药基因图谱

哺乳动物体内微生物及其携带的抗生素耐药基因(ARG)的跨宿主传播,是潜藏的重大公共卫生风险源。然而,现有研究面临多重技术瓶颈:低丰度微生物难以检测导致潜在病原漏报;大量未报道的微生物物种缺失限制了多样......

研究发现热融塌陷促进土壤微生物碳利用效率

持续的气候变暖造成多年冻土大面积融化。作为剧烈的冻土融化形式,热融塌陷会在短时间内改变植被、土壤和水文等过程,从而影响土壤微生物及其介导的碳过程。微生物碳利用效率是指微生物将吸收的碳分配至自身生长的比......

微生物可复刻巧克力风味

英国科学家研究发现,微生物群落能通过发酵可可豆,复制出高品质巧克力的风味特征,研究或能帮助提升醇正风味巧克力的工业化生产。相关研究8月18日发表于《自然-微生物学》。巧克力的独特风味取决于可可豆的发酵......

“生长曲线”当指挥:难养微生物也能唱“独角戏”

在地球的深海热泉、湿地,或者动物肠道和沉积物等环境中,生活着一群“无氧居民”——厌氧微生物。他们能分解有机废物、产生甲烷等可再生能源,还能参与温室气体的生成和消减——从污水处理厂到畜禽养殖、从沼气利用......

第十六届全国微生物资源学术研讨会召开

8月13日至17日,第十六届全国微生物资源学术研讨会在甘肃省张掖市召开。来自全国高等院校、科研院所和企业的500余位专家、学者及科研代表齐聚一堂。会议共安排了142场学术报告,包括34场大会主报告、8......

我国学者在精准抗菌研究领域取得进展

图TseVs效应蛋白的种属特异性抗菌机制在国家自然科学基金项目(批准号:32270061和32100019)资助下,南方科技大学傅暘教授研究团队在VI型分泌系统(T6SS)抗菌效应蛋白(以下简称:抗菌......

小小酵母,如何撬动跨界革命,引爆微生物的无限可能?

酵母,这一古老的微生物,不仅是人类饮食文化的重要伙伴,更在现代科技赋能下,衍生出食品加工用酵母、酵母加工制品、富营养素酵母等多样化产品,广泛应用于食品、农业、水产养殖、营养保健等领域。食品加工用酵母:......

科学家倡议像保护濒危物种一样保护微生物

爪哇犀牛、毛伊岛鹦嘴雀与B.coahuilensis——一种从墨西哥库托西涅加斯山谷富盐的潟湖中分离出来的细菌有什么共同之处?它们都是濒临灭绝的物种,但像B.coahuilensis这样的微生物的消失......