上世纪60年代,以矮化育种为标志的“绿色革命”使水稻和小麦具有耐高肥、抗倒伏和高产的优良特性,但同时也存在氮肥利用效率低的缺点,其产量增加对化肥的依赖性高。持续大量的氮肥投入不仅增加种植成本,还导致环境污染。农业农村部公布2019年我国三大粮食作物的化肥利用率为39.2%,远低于世界平均水平,更远低于欧美等发达农业国家水平。如何减少农业生产中的氮肥投入并持续提高作物产量,已成为我国农业可持续发展亟待解决的重大问题。
近日,中国科学院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室傅向东团队与其它三个实验室联合攻关,在《科学》(Science)杂志以研究长文(Research Article)形式发表了一篇题为Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice 的论文,报道了赤霉素信号传导新机制提高水稻氮肥利用效率的研究成果。该发现不仅深化了对赤霉素信号传导和植物氮素响应相互作用机制的理解,而且找到了一条在保证产量提高的同时,降低化肥投入、减少环境污染的育种新策略,为培育“少投入、多产出、保护环境”的绿色高产高效新品种奠定了理论基础,并提供了有育种应用价值的基因资源。该论文被Science杂志选为该期的封面文章进行重点推荐。

图1:赤霉素信号传导新机制调控水稻分蘖对氮素的响应
傅向东团队通过化学诱变和遗传筛选,从携带“绿色革命”基因sd1的水稻品种93-11中筛选到一个产量性状(分蘖)对氮素响应不敏感的突变体,并克隆了控制水稻氮肥高效利用的关键基因NGR5。研究表明NGR5是水稻生长发育响应氮素的正调控因子,NGR5与PRC2蛋白复合物互作,通过介导组蛋白甲基化(H3K27me3)修饰水平来调节靶基因的表达,进而调控水稻分蘖等农艺性状对氮素的响应。研究还发现,NGR5是赤霉素信号传导途径的一个新的关键元件,它能与赤霉素受体GID1蛋白互作。赤霉素通过促进NGR5蛋白降解,导致表观遗传修饰水平降低,进而增强靶基因的转录活性,实现赤霉素调控植物生长发育。进一步研究发现NGR5与植物生长抑制因子DELLA蛋白互作,DELLA蛋白能竞争性结合赤霉素受体GID1蛋白,抑制赤霉素介导的NGR5蛋白降解,进而增加NGR5蛋白稳定性。GA-GID1-NGR5信号传导新机制的发现不仅丰富了对赤霉素作用机理的认识,而且从分子水平上揭示了“绿色革命”矮秆品种在高肥条件下增产的原因。
DELLA蛋白积累导致了水稻和小麦“绿色革命”。前期研究表明水稻生长调节因子GRF4是一个协同调控植物碳代谢、氮氮代谢和生长发育的关键因子,而且GRF4也是赤霉素信号传递途径的一个重要组分,它能与DELLA蛋白互作。通过将GRF4-DELLA平衡向GRF4丰度增加倾斜,能协同提高水稻和小麦“绿色革命”品种的氮肥利用效率和谷物产量。研究发现,在当前主栽高产品种中,提高NGR5和GRF4表达量不仅能提高水稻氮肥利用效率,同时还可保持优良的半矮化和高产特性,使得水稻在适当减少施氮肥条件下获得更高的产量。
该论文于2月7日发表在Science杂志(DOI:10.1126/science.aaz2046)。遗传发育所博士吴昆和王栓锁为论文共同第一作者,傅向东和Nick Harberd为该论文的通讯作者。中科院分子植物科学卓越创新中心张一婧团队和中科院合肥物质科学研究院吴跃进团队参与了本研究。该研究得到国家重点研发计划、国家自然科学基金委和中科院战略性先导科技专项的资助。

图2:DELLA-NGR5-GRF4分子模块协同提高水稻产量和氮肥利用效率
中国科学院遗传与发育生物学研究所研究员傅向东与福建农林大学和浙江理工大学的合作者首次揭示了通过精准调控染色质三维结构,能协同提升水稻产量和氮肥利用效率,为解决长期困扰现代农业的“高投入、高产出”难题提......
当一粒种子落入土壤,它如何在贫瘠的环境中找到生存之道?水稻等作物如何精准感知土壤中的氮素变化,长久以来都是未解之谜。中国科学家近日破解了水稻感知土壤氮素的"密码"——通过钙信号串联......
水稻作为最重要的粮食作物,为超过半数的世界人口提供主食。然而,水稻黑条矮缩病毒(SRBSDV)等病毒严重危害水稻生长,威胁粮食生产安全,解析病毒—水稻互作的分子机制对水稻病毒病的防控具有重要意义。近日......
7月30日,《自然—遗传学》在线发表了扬州大学教授左示敏团队联合中国农业科学院植物保护研究所、河北师范大学等单位克隆的水稻抗纹枯病优异基因SBRR1-R。此基因蕴藏在水稻自然品种中,且具有显著育种价值......
近日,中国农业科学院植物保护研究所作物病毒病害监测与防控创新团队在《植物生物技术》(PlantBiotechnologyJournal)上在线发表了研究论文。该研究通过单细胞转录组测序揭示了水稻在感染......
记者杨舒从中国农业科学院生物技术研究所获悉,该所作物耐逆性调控与改良创新团队日前联合国内外研究机构,构建了首个水稻的多器官单细胞多组学图谱,系统解析了水稻不同细胞类型的功能及其对复杂性状的调控作用,有......
广东省农业科学院水稻研究所副研究员谭健韬/研究员刘琦团队与华南农业大学教授祝钦泷团队合作,研究开发出植物精准碱基编辑器实现水稻重要农艺性状蛋白功能活性的梯度调节。近日,相关成果发表于《先进科学》(Ad......
水稻作为起源于热带或亚热带的粮食作物,其生长发育对低温胁迫敏感。伴随全球气候变化加剧,极端低温事件发生频率显著上升,发掘耐冷基因并解析分子机制,有利于水稻高产稳产遗传改良。目前,利用自然群体挖掘的水稻......
强烈的厄尔尼诺事件能够诱发全球多个粮食产区的同步减产,因此被认为是威胁全球粮食生产稳定性的重要因素。以往研究普遍认为,厄尔尼诺是通过与粮食产区气候要素(温度、降水等)的遥相关导致该产区的作物减产。近日......
华中农业大学作物遗传改良全国重点实验室、生命科学技术学院教授李一博带领的团队,从自然环境中筛选出水稻耐高温基因QT12,为水稻在高温环境下实现稳产提质及育种提供新策略。相关成果于北京时间4月30日晚发......