发布时间:2015-05-20 09:58 原文链接: 我国科学家阐明体细胞重编程的关键重塑机制

   诱导多能干细胞技术能使成体细胞重新获得多能性,该方法诱导的多能干细胞(iPSC)在理论上可以分化为任何类型的成体细胞,在疾病模拟、药物筛选和细胞治疗中有巨大的应用前景,但目前人们对重编程机制了解依然非常有限。中国科学院广州生物医药与健康研究院(GIBH)的研究团队经过多年努力,在体细胞重编程中阐明了细胞重塑,mTOR和自噬之间的关系。这一成果在线发表在五月十八日的Nature Cell Biology杂志上,文章的通讯作者是GIBH的裴端卿研究员和秦宝明研究员。

  多能干细胞和体细胞在结构上有许多不同的,体细胞重编程为多能干细胞必然会涉及结构组成层面的细胞重塑。裴端卿研究员形象比喻:“细胞就像一个大房间,房间的结构和陈设决定了它的用途。而多能干细胞相当于是一个新房间,可以以此基础来建立特异的结构与陈设变为体细胞;反之,将成体细胞诱导成为多能的iPS细胞,需要一个将房间结构陈设彻底清空的过程。起先、我们推断这个清空的过程是由自噬完成的。 但最后发现这一推断是不对的、引起清空重塑的是另外一个有趣的机制”。

  大家知道,自噬在进化上是一个从酵母到人都非常保守的生物分解过程,通常是指细胞在营养物质非常匮乏的情况下通过降解自身暂时不需要的细胞质组分产生小分子营养物质来帮助细胞度过难关。以往研究认为自噬在重编程的细胞重塑中发挥关键作用,重编程在自噬缺失的细胞中无法发生。GIBH研究人员发现,自噬的确在重编程中被强烈激活。但令人意外的是,阻断自噬之后细胞重塑和重编程依然可以发生,而且效率更高。这说明,自噬激活并不是介导细胞重塑和重编程的必须事件。秦博士谈到:“我们一开始也猜测自噬是重编程中细胞重塑的关键原因,我们于是尝试了多种方法关闭自噬,但结果发现细胞重塑以及重编程并没有被阻断,反而效率显著性地提高了”。

  为了进一步寻找细胞重塑的真正原因,GIBH研究人员转而关注雷帕霉素靶蛋白复合物1(mTORC1)。mTORC1是细胞感受各种营养物质水平并控制生物合成和细胞分裂的关键激酶,在进化上也非常保守,在营养充足时启动生物合成并抑制自噬;在营养匮乏时活性关闭,自噬得以激活。研究人员发现,重编程早期mTORC1被迅速关闭并激活自噬,如果人为保持mTORC1一直开启,细胞大小和线粒体都不会减少,即细胞重塑不会发生,同时重编程被严重抑制。那么体细胞“房间”究竟是怎样被清空的呢?秦博士认为,一方面mTORC1的关闭会使细胞内的生物合成大大降低,同时随着细胞快速分裂,细胞内的整体物质组成就越来越少,细胞重塑于是就发生了。

  mTORC1和自噬在细胞代谢调控中都发挥重要作用,一直以来在衰老、肿瘤以及糖尿病等众多疾病领域备受关注。“重编程中mTORC1和自噬同样是一正一反的两个相反过程,对重编程以及细胞重塑的影响也截然不同,”秦博士说,“这样的复杂机制很可能也存在于生理和病理过程,比如衰老、癌症、糖尿病以及神经退行性疾病等,因为从重编程的视角来看,复杂疾病的发生很可能是来自少数几类关键细胞的命运转变的结果。”

  据介绍,这项研究是在该团队发现维生素C促进重编程时就开始,前后历时七年之久,结合了能量代谢转变与细胞亚结构重塑,是在机理与应用上的连续性探索。该团队表示还在继续挖掘重编程相关的分子与细胞机理。该项工作是在国家科技部、自然科学基金委以及中国科学院先导项目的支持下完成的。

相关文章

生物信号处理新框架精准解码细胞复杂语言

如何精确指挥细胞执行特定任务,是合成生物学发展的关键挑战。7月31日,中国科学院深圳先进技术研究院研究员陈业团队联合湖南省农业科学院单杨团队在《自然-通讯》发表最新研究。他们建立了一套全新的生物信号处......

新化合物能激活细胞天然防御系统

研究团队借助新型光遗传学工具筛选广谱抗病毒化合物。图片来源:美国麻省理工学院美国麻省理工学院领衔的研究团队借助创新性光遗传学技术,鉴定出3种能激活细胞天然防御系统的化合物——IBX-200、IBX-2......

赛多利斯完成收购MatTek,进一步扩充细胞技术产品线

近日,生命科学集团赛多利斯已成功完成对BICO集团旗下MatTek公司,包括Visikol的收购,相关交易于2025年4月对外宣布。在获得监管机构批准并满足其他常规交割条件后,该交易于2025年7月1......

芯片模型有望发现渐冻症成因线索

美国西达赛奈医学中心研究人员利用来自渐冻症(肌萎缩侧索硬化症,ALS)患者的干细胞,创建出一种“芯片上的ALS”疾病模型,有望揭示这种神秘且致命疾病的成因,并推动开发出有效的治疗方法。之前,研究人员已......

它们“非一般”的生存策略挑战了经典遗传学理论

在生命的微观世界里,细胞分裂时有着严格的染色体分配原则。按照经典遗传学和细胞生物学理论,细胞有丝分裂或减数分裂后,每个子细胞核都应该至少获得完整的一套单倍体染色体,这样才能保证细胞正常发育和发挥功能。......

上海市2025年度关键技术研发计划“细胞与基因治疗”拟立项项目公示

根据市科技计划项目管理办法有关规定,现将上海市2025年度关键技术研发计划“细胞与基因治疗”拟立项项目予以公示。公示链接:http://svc.stcsm.sh.gov.cn/public/guide......

细胞与基因治疗|国家重点研发计划颠覆性技术创新重点专项申报指引

5月26日,京津冀国家技术创新中心发布《国家重点研发计划颠覆性技术创新重点专项2025年度细胞与基因治疗领域项目申报指引》。该项目面向基础性、战略性重大场景,聚焦细胞与基因治疗领域关键核心技术环节,形......

3D活细胞样本在轨长期冷冻保存首获突破

4月30日,神舟十九号飞船携空间站第八批空间科学实验样品顺利返回地球。其中,中国科学院深圳先进技术研究院(以下简称深圳先进院)医药所能量代谢与生殖研究中心雷晓华研究员团队的“太空微重力环境下人多能干细......

张宏研究组揭示自噬蛋白ATG9调控溶酶体的功能

近日,中国科学院生物物理研究所张宏院士团队在自噬研究领域取得重要进展,首次揭示了自噬关键蛋白ATG-9通过调控磷脂翻转酶活性,促进受损溶酶体修复的分子机制。该发现为溶酶体功能障碍相关疾病的治疗提供了新......

EVIDENT焕新亮相细胞年会,以奥伟登之名加速本土化战略

人工智能正以前所未有的速度重塑细胞生物学研究。从高分辨率成像到细胞行为动态分析,AI技术不仅提升了数据处理的精度与效率,同时随着AI与生物学、医学等学科的深度融合,其在细胞研究中的应用正不断突破边界,......