发布时间:2012-12-11 00:00 原文链接: 操纵组蛋白H3.3或可抹除细胞“记忆

  取出一个成熟细胞并移除其身份,从而使其可成为任何种类细胞――核重组,在修复受损组织及在化疗后替换骨髓等领域具有广阔前景。2012年诺贝尔医学奖得主约翰・格登博士最新发表在《表观遗传学和染色质研究》杂志上的论文表明,由Hira蛋白存储的组蛋白H3.3,是将细胞核恢复多能性,即发展成为多种细胞类型的关键一步。

  所有个体的细胞都有相同的DNA(脱氧核糖核酸),随着生物体的成熟,这些细胞可被重组为心脏、肺、大脑等不同类型。为实现这一目标,不同的基因或多或少会在每个细胞谱系中永久关闭。随着胚胎的生长,经一定数量的分化后,沿着某条道路走下去的细胞将不再变成其他的东西。例如,心脏细胞不能转化为肺组织,肌肉细胞也不能形成骨头。

  重组DNA的一个方法是,将一个成熟细胞的细胞核转移到一个未受精的卵子中。卵子中的蛋白质及其他因子,将使DNA打开某些基因的同时关闭其他基因,直到它类似于一个多能细胞的DNA。但是,以这种方法完全抹去细胞的“记忆”似乎不太容易。

  调节基因活性的机制之一是染色质,特别是组蛋白。DNA缠绕在组蛋白上,其缠绕方式的变化将改变细胞可用的基因。为了了解核重组的工作原理,格登博士领导的研究团队将小鼠的细胞核移植到青蛙的卵母细胞中,并透过显微注射方式添加了荧光标记组蛋白,以观察组蛋白在细胞和细胞核内的什么地方聚集。

  研究小组使用实时显微镜明显观察到,从第10小时起,在卵母细胞中表达的H3.3组蛋白(参与基因的激活)开始并入移植的细胞核内。当研究人员查看 Oct4基因(参与形成细胞多能性)处的细节情况时,他们发现H3.3组蛋白也被纳入Oct4,与此同时基因开始转录。研究小组还发现,Hira组蛋白(需要H3.3协同进入染色质)也需要核重组。

  遗传专家指出,操纵H3.3的路径,或许可为完全抹除细胞“记忆”并产生一个真正的多能细胞提供一种新方法。研究表明,染色质是防止临床上常用的人为诱导重组的关键所在。

相关文章

科学家揭示体外组装和体内染色质纤维普遍折叠模式

9月13日,中国科学院生物物理研究所朱平研究组在国际期刊《细胞报告》(CellReports)在线发表论文,利用冷冻电子断层三维成像方法,揭示了体外组装和体内染色质纤维一种普遍存在的双螺旋折叠模式。在......

组蛋白去乙酰化酶Rpd3S核小体去乙酰化和DNAlinker收紧的分子机制

近日,中国科学院广州生物医药与健康研究院联合澳门大学,在《细胞研究》(CellResearch)上,在线发表了题为Structuralbasisofnucleosomedeacetylationand......

新发现揭示亲代组蛋白遗传影响细胞分化命运

人体大概有200多种细胞类型,这些细胞都是从同一个受精卵发育而来,它们拥有几乎完全一样的基因组信息,但其形态和功能千差万别。近几十年的研究发现,表观基因组图谱对于细胞身份的决定至关重要。但仍有一个主要......

NatureMethods:北大汤富酬团队揭示单个细胞内高阶染色质结构

调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......

生物物理所揭示染色质组装因子CAF1介导核小体装配的结构基础

在真核细胞分裂过程中,染色质结构的重新建立对于维持基因组完整性和表观遗传信息传递至关重要。DNA复制一方面破坏母链DNA的亲本核小体,另一方面新生核小体必须在DNA子链上重建。染色质组装因子CAF-1......

揭秘早期哺乳动物的发育过程

由于小鼠的易实验性和强遗传性,其一直是生物医学研究中使用广泛的动物模型。但是,胚胎学研究发现,小鼠早期发育的许多方面与其他哺乳动物不同,从而使有关人类发育的推论复杂化。英国剑桥大学等研究团队合作构建了......

新进展!构建新型双碱基编辑器

碱基编辑器是基于CRISPR/Cas9发展的新一代基因组编辑技术,可诱导单个碱基的突变,而鲜有关于特异性介导A-to-G和C-to-G双突变的碱基编辑工具的研究。此外,关于碱基编辑系统与染色质环境之间......

下一级的CRISPR基因编辑技术不再需要病毒帮助

事实证明,改性病毒是将CRISPR/Cas9基因编辑材料送入细胞核的便捷方式--但它们价格昂贵,难以扩展,而且有潜在毒性。现在,研究人员已经发现了一种非病毒方法,可以更好地完成这项工作。大多数人都听说......

图像分析在植物染色体和染色质结构研究中的应用

染色体核型分析对遗传进化和多样化的研究有重要作用,详细的染色体图谱被认为有助于植物育种,并帮助生物学家进行基本的生物学和遗传学研究。图像分析在染色体核型研究中应用广泛,然而通过计算机技术对染色质结构图......

中外科学家合作揭示开花植物染色质浓缩新机制

染色质经过螺旋缠绕浓缩形成染色体的过程,对于维持真核生物细胞正常体积至关重要。之前的研究表明染色质浓缩发生在异染色质区,而常染色质区为方便转录过程则停滞在松散状态不被浓缩。近期,来自清华大学和英国约翰......