发布时间:2022-07-11 13:24 原文链接: 新材料带来更强壮灵活人造肌肉

  美国科学家开发了一种新的材料和工艺,用于制造比生物肌肉更强壮、更灵活的人造肌肉。研究成果发表在最新一期《科学》杂志上。

  加州大学洛杉矶分校(UCLA)工程学院研究人员称,创建人造肌肉来完成工作并检测力和触觉,一直是科学和工程界的巨大挑战之一。

  在制造人造肌肉方面,虽然许多材料都很有竞争力,但具有高弹性的轻质介电弹性体(DE)因其柔韧性极佳而备受关注。大多数DE由丙烯酸或硅树脂制成,但这两种材料都有缺点。传统的丙烯酸DE可实现高驱动应变,但需要预拉伸且缺乏灵活性;有机硅更容易制造,但它们不能承受高应力。

  UCLA研究团队利用市售化学品并采用紫外线光固化工艺,创造了一种改进的丙烯酸基材料,该材料更柔韧、可调节且更易于扩展,且没有损失其强度和耐用性。丙烯酸能形成更多的氢键,从而使材料更容易变形,但研究人员调整了聚合物链之间的交联,使弹性体更柔软、更灵活。然后将得到的薄薄的、可加工的高性能介电弹性体薄膜(PHDE)夹在两个电极之间,以将电能转换为致动器的动能。

  每张PHDE薄膜都像一根头发一样轻薄,大约35微米厚,当多层堆叠在一起时,它们就变成了一个微型电动机,可像肌肉组织一样发挥作用,并产生足够的能量来为机器人或传感器的运动提供动力。研究人员已制作出4—50层不等的PHDE薄膜堆叠。

  配备PHDE致动器的人造肌肉可产生比生物肌肉更多的动力,柔韧性也比自然肌肉高3—10倍。

  UCLA的研究利用了“干法”工艺。该工艺用刀片将薄膜分层,然后进行紫外线固化硬化,使各层均匀。这增加了致动器的能量输出,使设备可支持更复杂的运动。

  这种简化的过程,以及PHDE的灵活和耐用特性,允许制造出新型柔性致动器,其可像蜘蛛腿般弯曲跳跃,亦可缠绕和旋转。研究人员还展示了PHDE致动器能够投掷比薄膜本身重20倍的豌豆大小的球。当电压打开和关闭时,致动器还可像隔膜一样膨胀和收缩。

相关文章

我国科研人员提出固态锂电池界面调控新方案

记者从中国科学院金属研究所获悉,该所科研团队近日在固态锂电池领域取得突破,为解决固态电池界面阻抗大、离子传输效率低的关键难题提供了新路径。该研究成果已于近日发表在国际学术期刊《先进材料》上。固态锂电池......

新型材料工艺刻蚀高性能微芯片

一块10厘米的硅晶圆,上面有使用B-EUV光刻技术制作的大型可见图案。图片来源:美国约翰斯·霍普金斯大学一个国际联合团队在微芯片制造领域取得关键突破:他们开发出一种新型材料与工艺,可生产出更小、更快、......

专家齐聚师昌绪物质科学与技术论坛,共议科教融合赋能材料创新

8月27日,围绕“科教融合赋能新材料创新”主题,中国科学技术大学材料科学与工程科教融合论坛暨第二届师昌绪物质科学与技术论坛,在中国科学院金属研究所举办。会议现场。主办方供图李依依、柯伟、成会明、方忠、......

第四届机械、航天技术与材料应用国际学术会议召开

记者从AEIC学术交流中心获悉,8月12日至14日,由英国伯明翰大学主办的第四届机械、航天技术与材料应用国际学术会议(MATMA2025)在英国伯明翰大学召开。来自机械工程、航空航天技术及材料科学领域......

人工肌肉也能“弹性”十足?他们揭秘弹性驱动新机制

“想象一下,我们既能用手指捏起一粒芝麻,也能提起一桶水。无论外力大小如何变化,肌肉都能恢复到原来的长度,为下一个动作做好准备。”中国科学院苏州纳米技术与纳米仿生研究所(以下简称苏州纳米所)研究员邸江涛......

2025中国化工学会能源、材料与化工学术会议召开

8月7日,2025中国化工学会能源、材料与化工学术会议在中国石油兰州石化公司召开,400余名专家、学者齐聚金城兰州,聚焦国家重大战略和产业深度发展需求开展深入交流研讨,共享最新成果,加快推进甘肃省绿色......

全自动机器人高速检测材料关键特性

美国麻省理工学院(MIT)团队开发出一种全自动机器人系统,可大幅加快对新型半导体材料的性能分析和测试速度。这项发表于《科学进展》杂志的技术突破,将极大提升当前对高效太阳能电池板材料的研发进程,还将为下......

长波红外非线性光学材料研究获进展

红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有重要的应用。当前商用的红外非线性光学晶体主要包括黄铜矿型化合物如AgGaS2, AgGaSe2和ZnGeP2 等。......

新材料兼具超导性和拓扑电子结构

美国莱斯大学科学家领衔的团队在材料领域取得一项突破性进展。他们通过向二硫化钽(TaS2)中掺入微量铟元素,制备出具有特殊电子结构的“克莱默节点线”金属。这项发表于最新一期《自然·通讯》杂志的研究,为开......

科研人员研发出新型仿生离子筛分材料

自然界中,生物离子通道能够精准筛分离子。这激发了研究人员构筑仿生离子筛分材料的灵感。这些材料可以分离一种阳离子跟其他阳离子,也能够将一种阴离子跟其他阴离子分开,广泛应用于化工和环境领域。用于分离阳离子......