[导读]动物视觉的复杂性使修复受损的眼睛成为现代医学最具挑战性的工作之一,但是一项最新研究表明修复眼睛或许有一天是可以实现的。
科学家最近成功将一种生物膜应用于老鼠视网膜,使其能够恢复感光性。这种生物膜被称作P3HT:PCBM,是由两种对光高度敏感的有机化合物组成的混合物(其中一种被用于构建太阳能电池)。为了测试这种生物膜,来自意大利技术研究所的科学家们饲养了两组老鼠:一组具有完善的视力,一组遭受严重的视力退化。
在对它们进行解剖之后,研究人员在一种有机溶剂中将老鼠的眼睛分离出来,并且剥离视网膜。研究人员将这些视网膜或者放置在一块平面玻璃上,或者放置在涂有P3HT:PCBM的玻璃上。视力退化老鼠的视网膜情况糟糕,然而科学家们发现涂有P3HT:PCBM的玻璃几乎能够完全弥补糟糕的光线探测。这一过程仍然需要很长一段路才能应用于人类,因为目前科学家们无法将这种生物膜应用于一颗完整的眼睛,或者说无法治疗一个活体生物。此外这项技术如果不做修改是无法应用于人类的。
近日,兰州大学稀有同位素前沿科学中心陈熙萌、李湛团队的一项题为“构建二维异质结构通道:利用工程化生物膜和石墨烯进行精准的钪筛分”的突破性研究成果发表在国际顶级期刊《先进材料》(AdvancedMate......
生物膜贴壁培养具有高光效、高产率、易采收和高效节水的巨大优势,是突破微藻生产效率和成本瓶颈的变革性培养技术之一,近十年来受到国内外广泛关注。不同于传统的微藻开放池和光反应器悬浮培养,人们对微藻生物膜的......
一项近日发表于《细胞》的研究发现,细菌生物膜包含了被人们认为是植物和动物所独有的结构组织。长期以来,人们认为生物膜——像细菌和真菌等微生物形成的黏糊块状物——在生物学上很简单,只有一种原始的结构组织。......
近日,中国科学院过程工程所与清华大学合作首次证明了二维材料氧化石墨烯能够与细胞膜形成三明治超级结构,并实现药物在膜磷脂层内的有效运输,开辟了药物精准递送新模式,为生物医药全新剂型的设计和新型纳米粒子的......
近日,中国科学院过程工程研究所与清华大学合作证明了二维材料氧化石墨烯能够与细胞膜形成三明治超级结构,并实现药物在膜磷脂层内的有效运输,开辟了药物精准递送新模式,为生物医药全新剂型的设计和新型纳米粒子的......
磷脂和肽是构筑细胞的基本结构单元。细胞的关键生物活动几乎都与这些生物分子的组装体有关。通过分子组装技术动态调控上述组装体的结构,可以更好地帮助理解细胞生命活动的本质规律。 在国家科技部、国家......
磷脂和肽是构筑细胞的基本结构单元。细胞的关键生物活动几乎都与这些生物分子的组装体有关。通过分子组装技术动态调控上述组装体的结构,可以更好地帮助理解细胞生命活动的本质规律。在国家科技部、国家自然科学基金......
细菌细胞聚集并产生凝聚彼此的一种粘稠物,这种像胶水一样的结构允许细菌形成更复杂得有机体,这种生物膜几乎无处不在,例如你家未清洁的淋浴喷头、公园湖泊表面等等。它们的“好处”是保护细菌免受潜在药物伤害,当......
生物膜法经过物化法去除油田废水中的不溶性有机物质之后,油田废水的污染物主要为溶解性有机质,而生物膜法可以去除油田废水中的溶解性有机物质。通过油田废水与生物膜的直接接触,生物膜中的固体物质与油田废水中的......
微生物虽然看不见,但却是无处不在的。人体的肠道和皮肤、地球的海洋和土壤,甚至植物的叶片和种子,都有它们的身影。在大多数情况下,这些微生物群落是由许多不同的物种组成的。研究人员试图鉴定这些微生物群落的组......