来自哈佛医学院、华盛顿州立大学等处的研究人员利用小鼠模型证实了,X染色体连锁智力障碍(X-linked Intellectual Disability,XLID)与组蛋白甲基化移除受损有关。这一研究成果发布在1月21日的《Cell Reports》杂志上。
著名华人科学家、哈佛大学终生教授、波士顿儿童医院讲席教授施扬(Yang Shi),华盛顿州立大学的Jun Xu,以及哈佛医学院的Shigeki Iwase是这篇论文的共同通讯作者。
XLID是位于X染色体上的基因发生突变引起的一类先天性智力障碍,所涉及的先天性智力障碍约占所有先天性智力障碍的15%。依据除了智力障碍外是否有其他其他生理方面的缺陷,XLID分为两类:S-XLID和NS-XLID。S-XLID表现在除了智力障碍外,还在新陈代谢方面、神经特征或者其他的体征——如骨骼、颅面部上有异常或者缺陷。
组蛋白去甲基化酶在转录调控中发挥了重要作用,其在神经系统疾病中的致病机理也日益被研究者重视。KDM5C又称SMCX和JARID1C,是一种X染色体连锁基因,它的蛋白质产物属于JmjC结构域组蛋白去甲基化酶亚家族,这一家族的成员介导了组蛋白H3K4me2/3去甲基化。一些人类遗传学研究发现KDM5C突变与XLID有关联,据推测占所有XLID病例的0.7%–2.8%。KDM5C致病突变包括无义突变和错义突变;所有测试的致病错义突变均破坏了KDM5C的酶活性,表明了一种功能丧失性疾病机制。
除了智力障碍,许多携带KDM5C突变的患者还显示出一些身体与行为异常,包括身材矮小、癫痫、攻击或暴力行为及持续的微笑。有意思地是,KDM5C还与其他的神经学异常,包括ARX突变导致的智力障碍、自闭症谱系障碍(ASD)、亨廷顿氏病和脑瘫有关联,表明它有可能是大脑发育及功能的一个重要调控因子。KDM5C广泛表达,在人类大脑及骨骼肌中呈最高水平。在小鼠大脑中,KDM5C广泛表达于与认知和情绪行为相关的区域,如前额皮质、海马和杏仁核。但目前对于KDM5C在中枢神经系统中的作用仍不是很清楚。
在这篇新文章中研究人员报告称,在小鼠中破坏Kdm5c基因可重演出XLID中观察到的一些适应行为和认知异常,包括社会行为受损、记忆障碍和攻击性。Kdm5c基因敲除大脑显示出异常的树突分支,脊柱异常及转录组改变。在神经元中,Kdm5c被招募至包含CpG岛,装饰着高水平H3K4me3的启动子处,在那里它微调了H3K4me3水平。Kdm5c主要抑制了这些基因,包括调控神经回路发育和功能的一些关键信号通路的成员。
这些小鼠行为数据有力地表明了,KDM5C突变与XLID存在因果关系。并且,新研究结果表明丧失KDM5C功能会破坏与临床表型相关的多个调控信号通路中的基因表达。
施扬教授长期从事生物化学以及分子生物学等方面的研究,并在表观遗传学研究中取得突破性成就,在国际上率先发现了首个组蛋白去甲基酶并开创表观遗传去甲基化领域,做为第一作者和通讯作者已发表过10多篇Nature和Cell论文。
2015年3月,施扬教授领导研究人员鉴别出了一个特异的LSD1/KDM1A亚型,证实它通过使得H3K9去甲基化调控了神经元分化。这一重要的研究发现发表在《分子细胞》(Molecular Cell)杂志上。
2015年12月,施扬教授和纪念斯隆-凯特琳癌症中心的Dinshaw J Patel领导研究团队,揭示了蛋白Unkempt识别不同RNA序列的具体机制。这项研究发表在Nature Structural & Molecular Biology杂志上。
同月,施扬(Cell Research)教授领导研究团队还发现,删除一种去甲基化酶能延长线虫的寿命,并且这种效果可以世代延续。这一重要成果发表在十二月二十二日的Cell Research杂志上。
记者10月6日从华中农业大学获悉,该校棉花遗传改良团队开发出基于CRISPR/dCas13(Rx)的新型植物RNA甲基化编辑工具。研究成果日前发表于《先进科学》杂志。N6-甲基腺苷(m6A)是真核生物......
近日,上海交通大学医学院附属仁济医院薛婧、王宇团队与上海交大基础医学院唐玉杰,浙江大学王超尘等国内外研究者合作在Gut期刊发表的最新研究成果,就揭示了经由内源性逆转录病毒元件(EndogenousRe......
表观遗传指的是在不改变DNA序列的情况下,基因表达和生物性状的可继承变化。细胞命运决定包括细胞身份的维持和转换,这就涉及到表观遗传信息的继承性和可塑性,是生命科学领域的重点前沿方向。生命的"......
DNA甲基化是表观遗传修饰的重要组成部分,可以通过改变染色质的结构、DNA的稳定性以及DNA和蛋白质的结合程度调控基因表达。在植物DNA甲基化的建立和维持过程中,植物特有的RNA聚合酶V(PolV)通......
在《自然》杂志上最新发表的一项研究中,由斋藤通纪领导的日本京都大学人类生物学高级研究所团队,确定了人类生物学中驱动表观遗传重编程和分化机制的重要条件,这标志着人类体外配子生成(IVG)研究中一个新的里......
近日,中国科学院上海营养与健康研究所AndrewE.Teschendorff研究组在《自然-衰老》(NatureAging)上,发表了题为Quantifyingthestochasticcompone......
图片表示从人类原始生殖细胞样细胞(绿色)到人类有丝分裂前精原细胞(红色)的体外分化。科技日报北京5月23日电(记者张梦然)在《自然》杂志上最新发表的一项研究中,由斋藤通纪领导的日本京都大学人类生物学高......
植物是复杂的生物系统。植物体内基因的表达受到多种水平的调控,如转录水平、转录后水平、DNA甲基化/去甲基化等,从而对基因表达进行精密高效的调控。中国科学院遗传与发育生物学研究所张劲松研究组筛选OsEI......
时间如梭,衰老是自然界不可抗拒的规律,但衰老的步伐并非一成不变——即使在同龄人之间,生理功能的衰退和器官老化的程度也存在显著差异。这些差异性说明个体的生物学年龄,即生理状态所反映的年龄,可能与其实际年......
北京大学汤富酬及周鑫共同通讯在CancerDiscovery(IF28)在线发表题为“Single-cellchromatinaccessibilityanalysisrevealstheepigen......