有机样品的激光诱导等离子体的机理,以及激光诱导击穿光谱(laser-induced breakdown spectroscopy-LIBS)对有机样品的定量分析。本文主要目的在于增加对一些基本物理机制的理解。这些物理机制主要包括激光与物质相互作用、等离子体的产生、演变和向环境气体的膨胀;本文还致力于如何提高激光诱导击穿光谱对有机样品的分析能力。激光在有机样品表面产生的等离子体与金属表面产生的等离子体有着明显的差别,特别是激光烧蚀样品的机制远比金属表面要复杂。正是由于有机样品的独特性,LIBS在此类样品的应用目前属于国际LIBS研究的热点。提高LIBS分析有机样品的能力在于怎么实现激光在有机样品表面产生的等离子体的时空分布稳定性和重现性。
针对LIBS对有机样品的应用,本文将按以下组织结构进行阐述:首先,前言部分主要介绍当今LIBS的科学技术背景。第一章主要回顾一些理论知识,包括必要的激光诱导等离子体的产生和等离子体在背景气体中的膨胀过程,其中特别强调在有机样品中的应用。第二章着重于一种典型农业产品,马铃薯皮样品中等离子体的产生和演变。本文工作开始时,在软质并且潮湿的有机样品,如新鲜土豆中的等离子诱导的特点还是当时科研界的未知领域。这些特性的研究为在有机品中的痕量和超痕量金属元素定量分析提供了必要的理论基础。在阐述该样品中的等离子体特性后,本章节讨论了土豆皮中LIBS光谱特性,并且提取出半定量的分析结果。
在第二章的研究基础上,本文第三章继续讨论LIBS对有机样品的定量分析。本章主要研究LIBS技术和电感耦合等离子体原子发射光谱(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP-AES)在对奶粉样品的定量分析结果的比较。该结果一方面是对LIBS技术对有机样品定量分析能力的评估,另一方面也验证了本文采用的无校准LIBS (Calibration Free-LIBS:CF-LIBS)技术手段和结果。不同于第二、三两章侧重于有机样品中的微量金属元素的测量,第四章研究的主要内容在于有机样品固有的有机结构,也就是被公认的四大有机元素C、H、O和N。由于激光烧蚀有机样品会有机结构的分解,在等离子体中这些元素可能以分子链的形式直接从样品中喷射出来;同时它们也可能通过碰撞重组,以新的分子形式存在。本章我们主要讨论这些分子的形成与激光烧蚀参数之间的联系,其中主要研究不同激光波长对样品烧蚀的影响。本文最后总结了上述工作并提出在此基础上的展望
10月27日晚间,莱伯泰科披露2023年三季报。2023年前三季度,公司实现营业收入3.00亿元,同比增长20.45%;归母净利润0.27亿元,同比下降22.77%;扣非后归母净利润0.25亿元,同比......
洪永淼世界计量经济学会会士、发展中国家科学院院士,中国科学院数学与系统科学研究院特聘研究员,中国科学院大学经济与管理学院特聘教授。研究方向:计量经济学、时间序列分析、金融计量学、中国经济、统计学。部分......
这种方法是在280nm波长,直接测试蛋白。选择Warburg公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋......
红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳朗4102勃特(Beer-Lambert)定律。比尔—1653朗伯定律数学表达式:A=lg(1/T)=KbcA为吸光度,T为透射比(透光度)......
使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分专析器,利用电场和磁场使属发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生......
气相色谱(gaschromatography简称GC)是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气相色谱法是指用气体作为流动相......
色谱分析是指按物质在固定相与流动相间分配系数的差别而进行分离、分析的方法。其按流动相的分子聚集状态可分为液相色谱、气相色谱及超临界流体色谱法等。色谱仪是进行色谱分析的装置,包括检测装置,记录和数据处理......
GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,其过程如图气相分析流程图所示。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中......
大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,它们的有效激发体积(空间分辨率)取决于入射电子束的束斑直径和俄歇电子的发射深度。能够保持特征能量(没有能量损失)而逸出表面的俄歇电子,发......
因光电子信号强度与样品表面单位体积的原子数成正比,故通过测量光电子信号的强度可以确定产生光电子的元素在样品表面的浓度。采用相对灵敏度因子法,原理与俄歇电子能谱方法相同,元素X的原子分数为:相对灵敏度因......