发布时间:2016-06-20 15:04 原文链接: 李劲松教授:当单倍体干细胞遇上CRISPR/Cas9

  6月17日,由生物谷主办的“2016(第三届)基因编辑研讨会”在沪隆重召开。中国科学院上海生物化学与细胞生物学研究所李劲松研究员为了我们带来了题为“当单倍体干细胞遇上CRISPR/Cas9”的精彩报告。

  李劲松研究员2007结束在洛克菲勒大学的博士后研究,回国担任生化细胞所研究所研究员,研究组长,先后获得“百人计划”,“杰出青年基因”支持,研究成果2011年和2012年两次入选“中国科学十大进展”,率先建立小鼠的孤雄单倍体胚胎干细胞,并首次将Crispr-cas9技术应用于小鼠白内障疾病即个体水平的治疗。

  本次会议,李劲松教授首先从单倍体产生的历史开始,为大家介绍了小鼠孤雄单倍体胚胎干细胞的建立。孤雄单倍体胚胎干细胞的建立有两种方法,分别是向去核的卵母细胞中注入精子,让其发育到囊胚,然后体外建系,通过流式分选的方法富集单倍体。或者去除受精卵的雌原核,让其发育到囊胚,然后体外建系,通过流式分选的方法富集单倍体。孤雄单倍体可以使卵子受精,产生小鼠,称之为“半克隆小鼠”。毫无疑问,孤雄单倍体的建立,相当于获得了可以体外进行遗传操作的“人造精子”。但李教授表示,单倍体的“受精能力”很低(半克隆小鼠出生效率大约4%,且其中一半发育阻滞),且会随细胞的传代逐渐丢失,通过将调控雄性印记的H19和Gtl2表达的H19-DMR和Gtl2-DMR敲除后,半克隆小鼠出生效率能提高到20%多,且基本无发育阻滞小鼠。

  随后,李劲松教授讲解了结合CRISPR-Cas9技术对单倍体干细胞进行遗传编辑的应用和优势。首先,利用这种“人造精子”,可以快速制备基因编辑小鼠模型。比如:多基因敲除和敲入小鼠模型。其次,利用H19-DM和Gtl2-DMR双敲的孤雄单倍体携带CRISPR-Cas9文库能一步产生大量杂合及双链突变小鼠,建立了可以用于个体水平遗传筛选的新工具。再次,可进行多基因遗传疾病的研究,比如,四个基因杂合敲除小鼠可以模拟DM1疾病,最后,两者的结合在建立遗传筛选体系上也具有一定优势。

  最后,李劲松教授介绍了卵子来源“人造精子”的建立,食蟹猴孤雌单倍体干细胞的建立以及人的孤雌单倍体胚胎干细胞的建立的工作。其中,卵子来源“人造精子”的建立得益于长期传代中,孤雌单倍体胚胎干细胞的雌性印记逐渐丢失,随后通过将H19-DMR和Gtl2-DMR敲除,也可使孤雌单倍体胚胎干细胞获得高效的使卵子受精的能力。

相关文章

第六届中国干细胞与再生医学协同创新平台大会在京召开

11月30日,第六届中国干细胞与再生医学协同创新平台大会在北京召开。大会以“规范?融合?创新”为主题,旨在搭建高水平交流与合作平台,汇聚各方力量共商干细胞与再生医学领域标准化建设、资源整合与协同创新大......

研究发现限制人多能干细胞发育潜能的新机制

在国家重点研发计划、国家自然科学基金等项目资助下,中国科学院广州生物医药与健康研究院研究员潘光锦、副研究员单永礼团队成功揭示了一种限制人多能干细胞发育潜能的关键因子——去泛素化酶USP7,并深入阐释了......

人类胃器官早期发育机制与体外重构研究获突破

清华大学副教授邵玥团队与合作者利用人多能干细胞,首次在体外培养出一种包含胃底和胃窦双极分布的胃器官发育模型,破解了WNT信号梯度悖论,建立了微尺度组织定向组装技术,可对类胃囊中不同谱系的组织模块独立开......

诺奖得主安医大开讲共话干细胞研究未来

“这里将百年历史积淀与现代医学教育完美融合,这种传承与创新的平衡令人印象深刻。”9月3日下午,安徽医科大学新医科中心(新校区)迎来一位国际“大咖”:诺贝尔生理学或医学奖得主、英国卡迪夫大学教授马丁·埃......

风口上的对话:IGC广州站议程首发,60+干细胞/免疫细胞/外泌体领域权威专家揭秘下一个增长点,千人见证细胞产业如何巨变

【聚焦细胞治疗新纪元,共启产业转化新征程】2025年,中国细胞产业迎来爆发式突破:首款干细胞疗法获批上市、博鳌乐城首发收费清单、实体瘤细胞药物申报上市、国家政策力推抗衰老领域……行业正以前所未有的速度......

【首批阵容官宣】十年深耕,IGC广州站集结60+细胞行业顶流:干细胞、外泌体、免疫细胞三线并进,解锁千亿产业新机遇!

十年积淀,IGC2025-广州站第十届细胞及衍生物研发与产业化大会将在10月23-24日于广州再度创新启航!IGC广州站以“政策催化与技术创新,挖掘细胞产业应用多样性”为主题,从主会场与四大专场论坛出......

干细胞育出有完整血管网络的“迷你”肺

美国科学家首次利用干细胞培育出具有完整血管网络的肺类器官。这些“迷你”肺与人类肺部的发育过程高度相似。这项发表于《细胞》杂志的最新成果,不仅揭开了人类早期发育的奥秘,也为构建肠道和结肠等其他血管化器官......

“超级再生”动物激发人类医疗灵感

在受伤后,一些涡虫几乎可以再生体内的所有细胞,墨西哥钝口螈可以重建整个四肢和部分大脑,斑马鱼可以修复断裂的脊髓,绿安乐蜥则能重新长出尾巴。鱼类、两栖动物、爬行动物和蠕虫展现的再生能力令研究人员着迷已久......

仅需5天,干细胞变“救命”血管

当实验小鼠的血管受损后,科学家将仅用5天时间在实验室中培育出的微型球状人工血管植入其体内,成功恢复了受损组织的血液供应,大幅减少了组织坏死的发生。这一突破为未来治疗因事故或血栓导致的组织损伤带来了新的......

CGT新浪潮新洞见!免疫细胞/基因治疗/再生医学/干细胞最新日程发布,2025青藜风云论坛即将启幕!

......