氧化亚铜(Cu2O)是一种性能优异的半导体材料,它具有2.1eV(590nm)的直接帯隙以及很高的可见光吸收系数,再加上它具有无毒、低价、原料丰富等优点,已成为太阳能转化与利用研究领域的重要材料。理论预计基于Cu2O的太阳能电池效率可达20%,通过掺杂引入合适的中间带(intermediate band)后,其光电转换效率的理论极限可进一步提高到~60%。同时,Cu2O具有光催化活性,可以直接利用可见光来催化水的裂解产生氢气。
中国科学院物理研究所/北京凝聚态物理国家实验室(筹)清洁能源前沿研究重点实验室杜小龙研究组持续开展了Cu2O单晶薄膜的可控生长、掺杂及缺陷调控等一系列研究工作,获得了一些重要进展。Cu2O中Cu处于中间价态,这为单一价态Cu2O的制备带来了困难,梅增霞副研究员、李俊强博士、杜小龙研究员等通过对Cu膜氧化动力学过程的系统研究,实现了氧化过程的精确控制,抑制了欠氧化或过氧化所造成的金属Cu或二价CuO团簇的形成,并进一步发展了Cu2O的外延生长工艺,利用分子束外延法在ZnO、MgO、SrTiO3等多种衬底上制备出高质量Cu2O单晶薄膜。通过调节富铜/富氧生长条件,实现了薄膜中本征缺陷种类及浓度的调控,在室温下观察到了强烈的激子发光,并证实了铜空位(VCu)是影响激子特性的主要原因,而氧空位(VO)含量对激子发光的影响较小。
掺杂是调控Cu2O光电特性以满足器件应用需要的必要手段,最近该团队和E02组孟庆波研究员、SF3组纪爱玲副研究员以及挪威奥斯陆大学的Andrej Kuznetsov教授等合作,通过氮掺杂技术实现了对Cu2O的电性调控,并系统研究了杂质和缺陷在Cu2O晶格中的动力学行为。N原子掺入会占据O原子位形成替位原子,还会导致薄膜中VO含量增加,并有部分N原子会形成填隙原子(Ni)。Ni是一种在研究中被长期忽视的缺陷,然而该团队的研究结果证明:它与其他缺陷的相互作用对Cu2O薄膜的光电性能产生了重要影响。在适当的退火条件下,Ni能够迁移到VO的位置填补这一空位,导致VO和Ni减少以及NO增加,从而使薄膜性质发生相应的改变。这一工作发表在Scientific Reports 4, 7240 (2014)。基于对氮掺杂机理的理解,通过对掺杂及退火条件的设计,可以大幅提高Cu2O薄膜光电性能,为其在能源器件中的应用打下坚实的材料基础。
上述工作得到了科技部、国家自然科学基金委和中国科学院的项目资助。
Cu2O掺杂机理研究论文:Scientific Reports 4, 7240 (2014)
Cu膜氧化动力学过程研究论文:Chin. Phys. B 21, 076401 (2012)
Cu2O单晶薄膜外延生长研究论文:J. Cryst. Growth 353, 63 (2012)
Cu2O激子发光研究论文:Opt. Mater. Express 3, 2072 (2013)
图1. Cu2O单晶薄膜的制备:ZnO模板上(a)Cu2O(111)和(b)Cu2O(110)薄膜的XRDθ-2θ扫描结果及RHEED监测结果;(c)ZnO/Cu2O异质结原型器件示意图及I-V测试结果;(d)蓝宝石上Cu2O单晶薄膜的XRD θ-2θ扫描及RHEED监测结果;(e)蓝宝石上单晶Cu2O薄膜的XRD ф扫描结果。
图2. Cu2O光电性能调控及缺陷研究:(a)掺氮样品的XRD θ-2θ扫描结果;霍尔测试得出的(b)电性随掺杂浓度变化及(c)电性随退火温度变化的结果;(d)室温下PL测试结果以及用声子辅助的模型对激子发光峰的拟合;(e)掺氮样品的室温PL谱;(f)氮掺杂样品中杂质缺陷作用机理示意图。
1月22日,中国科学院上海微系统与信息技术研究所研究员欧欣团队联合美国科罗拉多大学教授GabrielSantamariaBotello、瑞士洛桑联邦理工学院教授TobiasJ.Kippenberg团队......
中国科学院上海微系统与信息技术研究所研究员欧欣团队,联合南京电子器件研究所研究员李忠辉团队,在金刚石基氧化镓异质集成材料与器件领域取得突破性进展。12月9日,研究成果在第70届国际电子器件大会(IED......
聚合物半导体是新一代柔性光电子产业的基础材料,在高柔性逻辑电路、可植入智能感知器件、热电发电与制冷器件等方面具有应用前景。化学掺杂可以精细调控聚合物半导体的导电性能和光电功能,并拓展材料的应用领域。近......
近日,华东理工大学清洁能源材料与器件团队自主研发了一种钙钛矿单晶薄膜通用生长技术,将晶体生长周期由7天缩短至1.5天,实现了30余种金属卤化物钙钛矿半导体的低温、快速、可控制备,为新一代的高性能光电子......
近日,华东理工大学清洁能源材料与器件团队自主研发了一种钙钛矿单晶薄膜通用生长技术,将晶体生长周期由7天缩短至1.5天,实现了30余种金属卤化物钙钛矿半导体的低温、快速、可控制备,为新一代的高性能光电子......
锂硫电池具有超高的理论能量密度,并且资源丰富、成本低廉、环境友好,是具有潜力的下一代储能电池。但反应动力学缓慢和中间物种多硫离子穿梭效应导致活性物质利用率低和容量快速衰减,影响了锂硫电池的应用。近日,......
在国家自然科学基金项目(批准号:21774055、51903117)等资助下,南方科技大学郭旭岗教授团队与美国Flexterra公司AntonioFacchetti合作,在有机半导体n-型掺杂中取得进......
为开辟硅基电子器件之外的新途径,基于量子材料的新器件研究成为前沿热点。作为量子材料的重要分支,二维量子材料厚度只有原子级且量子效应显著,大面积、高质量的二维单晶制备是实现二维器件规模化应用的核心关键,......
ZnO基光电子学及透明电子学是近年来信息和材料科学领域的研究热点。理论上通过Mg、Be等元素的掺杂,ZnO基合金的禁带宽度能在很宽波段范围内进行调谐,如通过调整MgxZn1-xO中的Mg组分,其带隙可......
在过去的一个世纪里,超导(特别是高温超导)吸引了无数的物理学家和材料学家的兴趣。这不仅因为超导现象所包含的物理丰富,而且因为其在工业上的应用前景广阔且逐渐步入人们的日常生活。目前发现的高温超导体有两大......