近日,化工系工业催化中心陆奇副教授带领的研究团队在《自然·通讯》 (Nature Communications) 上发表了题为《串联催化二氧化碳电化学还原制备甲烷的计算及实验研究》 (Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane) 的研究论文。
随着工业的快速发展,大量的化石燃料的使用导致了大气中二氧化碳浓度的逐年升高,随之而来的环境问题,如温室效应、沙漠化等逐渐引起人们的关注。一种非常有前景的解决方式是使用可再生能源,如太阳能、潮汐能等产生的电能,通过电化学的方式将二氧化碳转化为高附加值的化学产品,如甲烷、乙烯、乙醇等。二氧化碳的电催化还原既能够有效地降低大气中的二氧化碳含量,同时也为这些可再生能源提供了一种储存的解决方案。但目前仍没有一种可靠的催化剂能够高效地实现这一过程。为了研发出高效的催化剂,对这个过程的反应机理的研究显得尤为重要。
图1. (a) 密度泛函计算模型 (b) 一氧化碳在电极表面迁移的能量曲面 (c) 迁移而来的一氧化碳在电极表面的还原机理
在这项工作中,研究者阐述了二氧化碳电化学还原中的串联反应机制,即二氧化碳还原过程可以拆分成两个连续的步骤从而分别优化:先使用高选择性的催化剂(如金、银等)作为衬底将二氧化碳还原为一氧化碳,再通过负载在衬底上的催化剂(铜)将一氧化碳还原为需要的化学产品。为了阐明这一理论模型,研究者首先通过密度泛函理论计算,证明了衬底产生的二氧化碳能够自发、快速地迁移到负载于衬底上的铜催化剂;负载的铜催化剂也能够在一定的电压下实现一氧化碳的电催化还原得到甲烷。进而,研究者依据计算化学结论的指导,通过电化学的实验手段,验证了这一模型的可行性。通过使用串联反应机制,研究者能够以接近60%的效率将二氧化碳转化为甲烷,相对于二氧化碳的直接还原而言,效率提升接近一倍。为了进一步确认串联反应机制的表面过程,研究者使用了原位全反射表面增强红外光谱研究这一电化学过程。在较低电压下,复合的电极材料便能够观测到特殊的一氧化碳的伸缩振动吸收峰,而单一的电极材料无法观测到这一吸收峰,从光谱的角度确认了实验模型中的串联反应机制。这项工作通过设计密度泛函计算及相应的实验模型,佐以原位红外光谱进行表面表征,阐明了二氧化碳电化学还原中串联反应机制的可行性,为二氧化碳化学还原的反应机理研究、催化剂设计、反应器优化提供了新的思路。
论文共同第一作者为清华大学化学工程系2017级博士生张皓晨和美国特拉华大学化学工程系博士后常晓侠。美国哥伦比亚大学陈经广(Jingguang G. Chen)教授,美国加州理工学院威廉·戈达德三世(William A. Goddard III)教授参与了该项研究工作。论文共同通讯作者为美国特拉华大学化学工程系徐冰君副教授、台湾成功大学化学系郑沐政副教授和清华大学化学工程系陆奇副教授。该项研究工作得到了国家重点研发计划、国家自然科学基金基金等项目资助。
为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将太原理工大学2025年4月采购意向公开如下:......
12月30日,中国工程院院士、深圳大学深地科学与绿色能源研究院院长谢和平团队有关“低能耗电化学碳捕集”的最新研究成果发表于《自然—通讯》。随着全球气候变化加剧,如何有效减少大气中的CO2已成为应对气候......
美国莱斯大学团队开发了一种创新的电化学反应器,或可显著减少直接空气捕获(即从大气中去除二氧化碳)所需的能量消耗。这一新型反应器的设计不仅更加灵活和易于扩展,而且有望成为对抗气候变化、减轻温室气体排放的......
储能作为新型电力系统中的关键一环,发展日益受到关注。项目越建越多、系统越来越复杂,安全事故开始冒头,特别是电化学储能电站起火爆炸事故频现,夯实安全之基迫在眉睫。近日,应急管理部办公厅正式发布《关于批准......
近日,暨南大学物理与光电工程学院(理工学院)研究员郭团受邀在《激光与光子学评论》(Laser&PhotonicsReviews)发表题为《基于“光纤实验室”的电池电化学原位传感技术进展》的特邀......
近期,中国科学院宁波材料技术与工程研究所氢能与储能材料技术实验室研究员陆之毅带领的电化学环境催化团队,通过在两个固体之间引入致密的水合层,使得用于原位海水电解的阴极具有了疏固特性,在天然海水直接电解制......
据最新一期《先进功能材料》报道,一个国际科研团队开发出一种治疗慢性伤口的有效方法,不需要使用抗生素,而是使用一种电离气体来激活伤口敷料。研究人员认为,新方法在解决抗生素耐药性病原体方面取得了重大进步,......
近日,中国化学会电化学专业委员会(CSE)首次发布“电化学10大科学问题”。电化学是研究电能与化学能以及电能与物质之间相互转换及其规律的科学,并已逐渐发展成为跨越基础科学(理论)和应用科学(工程、技术......
近日,陕西科技大学材料科学与工程学院(文物保护科学与技术学院)碳基功能材料创新团队在电化学储能研究领域取得进展,相关研究成果发表于AdvancedMaterials上。这种超薄的HEA层为无枝晶负极提......
纳米电化学的核心问题之一是测量界面的微观化,进而探索和调控纳米尺度下电荷传输和物质传递过程;而微观化引起的电化学限域和界面尺度效应将随之显现。纳米碰撞电化学是利用纳米材料和电极表界面的碰撞信号对纳米材......