发布时间:2014-10-13 14:30 原文链接: 理化所发现电场诱导的液态金属射流基础现象及其用途

  近日,由刘静研究员及何志祝博士带领的中国科学院理化技术研究所研究小组,首次发现了一种独特的极低电压诱发的液态金属射流现象,为金属微滴乃至固体颗粒的快速制备和精确操控打开了一条新途径,相应论文发表于美国物理学会《应用物理快报》(Fang et al, Applied Physics Letters, 105: 134104, 2014)。文章第一作者为来理化所进行暑期实习的清华大学钱学森力学班大三学生房文强。

  此项工作源于刘静团队十余年来在液态金属领域的持续探索和积累。此前,团队曾发现手动操控下的液态金属经毛细管注入特定溶液中时会自动离散成大量的金属液滴,由此建立了一种无槽道式快速制备金属微粒的方法(Yu et al., Advanced Engineering Materials, 16: 255, 2014,封面文章)。与此同时,团队还首次发现电场控制下液态金属可在各种形态及运动模式之间发生转换的多变形现象(Sheng et al., Advanced Materials, 26: 6036, 2014,封面文章),并建立了系列调控液态金属变形的方法。正是在延续上述工作的过程中,研究小组再次获得出人意料的发现。他们通过实验观察到,在无电压作用时,盛放于容器腔出口毛细管内的液态金属前沿会因表面张力和外界静压的作用而保持静态;一旦施加电场时,浸没于氢氧化钠溶液中的毛细管内液态金属会自动喷射而出形成微滴,仿佛喷泉一般,这些液滴在电场作用下朝着阳极方向快速移动,可控性强,到达后形成“大珠小珠落玉盘”的景象,若将持续生成的液滴冷却收集后即可获得金属固体微粒,整个过程仅需极低电压(2-20V)即可轻易实现;电压越高,金属液滴生成率及移动速率越快。

  通过系统的对比实验,研究小组探明了液态金属从喷射到液滴产生与运动的三个关键流动相态。在喷射伊始,外界电压产生的电场力会打破液态金属界面的力学平衡,并使其沿电场方向发生变形和运动;当液态金属从毛细管喷射出来进入氢氧化钠水溶液时,由于自身的低粘、高表面张力与电场力相互作用,液态金属射流随即发生Plateau–Rayleigh不稳定现象,由此撕裂离散成粒径均一的液滴;金属液滴在电场作用下易于形成电双层,液滴自身的高导电性会使其界面切向电场力消失,而电双层内的切向电场力必须通过金属液滴运动产生的剪切应力来实现力学平衡,由此诱导了液滴运动方向与电场方向保持一致。在上述过程中,外界电场力是促成液态金属液滴喷射和运动的主要动力来源,而氢氧化钠溶液则有效及时地消除了界面电化学反应生成的金属氧化物。值得指出的是,传统的胶体或金属颗粒电泳现象需要上千伏电压驱动,而此次发现的金属液滴快速运动只需数伏电压即可,其本质原因正在于液态金属优良的导电性和流动性使然。此前,电压诱导的液态金属喷射现象从未被报道过,这种微滴生成与运动效应无需复杂设备,能耗极低,操控极为简便快捷,十分有利于应用。

  近年来,液态金属液滴在微开关、微泵、焊料、金属零部件制作乃至3D打印金属粉末等方面展现出独特的应用价值。而传统的金属液滴制备需借助复杂的微流控技术实现,成本高、工艺复杂、程序繁琐且生成效率低。研究小组此次取得的基础性发现和建立的方法,为扩展液态金属的应用提供了重要技术手段;这种电控射流效应也引申出十分丰富有趣的物理学图景,为今后探索室温液态金属独特的流体力学行为指出了新的方向。

低电压电场诱导出的液态金属射流与微滴生成现象(左)及其作用机理(右)

相关文章

中科院金属所成功研发新技术,实现半导体颗粒在液态金属中规模化成膜

太阳能光催化分解水绿氢制备技术属于前沿低碳技术。这一技术走向应用的关键是构建高效、稳定且低成本的太阳能驱动半导体光催化材料薄膜(即人工光合成膜,又称人工树叶)。该领域常用的薄膜制备技术因制备环境苛刻或......

我国科学家领衔研发液态金属成膜新技术

自然界的植物光合作用可实现太阳能到化学能的转化,如何模仿这一过程来实现太阳能的转化利用和产业化,长期以来备受关注。记者2月26日从中国科学院金属研究所获悉,该所沈阳材料科学国家研究中心刘岗研究团队与中......

透明陶瓷材料电场辅助快速连接研究获进展

以镁铝尖晶石(MgAl2O4)和氧化钇陶瓷(Y2O3)为代表的高光学质量透明陶瓷,因优异的综合物理化学性能,在激光、高技术和医疗等领域应用广泛。然而,受限于陶瓷材料本身的脆性与难加工特性,透明陶瓷的连......

​常温下呈液体状态神奇的液态金属都能干些啥?

在我们的生活中,并非所有金属都是敲起来梆梆响的,有一些金属在常温下就可以呈现液体的状态,事实上我们对液态金属也并不陌生。比如生活中需要甩一甩量体温的体温计,测血压时用到的老式的血压计,里面标记刻度的是......

液态金属催化剂引领化工工艺变革,助力实现“绿色化学”解决方案

液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然·纳米技术》上的一项创新研究,摆脱了由固体材料制成的......

液态金属催化剂或撼动百年化工工艺,为“绿色化学”提供解决方案

液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然·纳米技术》上的一项创新研究,摆脱了由固体材料制成的......

理化所在仿生液态金属机电一体化器件研究方面取得进展

感知机械刺激并将其转化为生物电信号以完成信息感知、传递和计算,是自然界动物生存和进化的基本生理机制,在此基础上,还可以演化出各种各样的用以应对复杂多变环境的智能行为,如信息处理、学习、判断、反馈等。在......

学者研制出兼具拉伸性与气密性的液态金属新材料

近日,上海交通大学材料科学与工程学院教授邓涛团队、副研究员尚文团队等通过构建微米玻璃球阵列支撑的液态金属柔性密封复合材料,解决了传统封装材料无法同步兼顾可拉伸和高气密性的难题。这项研究于2月3日发表于......

液态金属环境下中国低活化马氏体钢氧化膜演化机理研究

近日,中国科学院合肥物质科学研究院核能安全技术研究所研究员黄群英项目组在铅基反应堆液态金属环境下中国低活化马氏体(CLAM)钢氧化膜演化机理研究中获进展。相关研究成果发表在JournalofNucle......

液态金属“变身”神经电极:向解密生命进发

原文地址:http://news.sciencenet.cn/htmlnews/2022/9/487054.shtm科学家们已经证明,神经传导实际上是一种电化学的过程——神经纤......