2018年9月5日,北京大学生命科学学院宋艳研究组题为The retromer complex safeguards against neural progenitor-derived tumorigenesis by regulating Notch receptor trafficking的最新研究成果在线发表于国际知名学术期刊eLife。该研究发现Retromer复合体作为“拆弹部队(bomb squad)”将神经祖细胞内可能被“引爆”的Notch受体及时“拆除”并运离,从而确保神经祖细胞的命运锁定,防止脑肿瘤的发生。同期,eLife杂志对该研究成果进行了亮点新闻推送。
单方向(unidirectional)Notch信号的正确建立和维持对于多种干细胞谱系中的细胞命运决定和稳态调控都至关重要。譬如,神经干细胞不对称分裂时会将Notch负调控因子Numb不对称分配至未来神经祖细胞中,进而通过由Numb介导的Notch受体内吞来下调Notch信号,建立从神经祖细胞至干细胞的单方向Notch信号。然而,干细胞谱系内防止Notch信号细胞自主性(cell-autonomous)异位激活的分子调控机制还尚不清楚。利用果蝇神经干细胞谱系作为理想模型,宋艳研究组发现,虽然Numb的不对称分配促使神经祖细胞质膜上Notch受体的不对称内吞,却同时增加了Notch受体在祖细胞胞内被异位激活的风险。通过遗传筛选,他们发现,逆转运复合体Retromer是化解这一危机的关键。Retromer复合体是一个进化上高度保守的内体分选(endocytic sorting)复合体,主要介导跨膜蛋白从内体(endosome)到反式高尔基体网络或质膜的逆向囊泡运输。之前的研究表明Retromer复合体在动物体发育过程中起着重要作用,而其功能障碍与包括阿尔茨海默症、帕金森综合症等神经退行性疾病在内的多种人类疾病的发生息息相关。
宋艳研究组发现,Notch受体在内吞入神经祖细胞后,由E3泛素连接酶Itch/Su(dx)介导其多泛素化修饰。高泛素化Notch受体在多囊泡体(multivesicular bodies; MVBs)上被分选进入ESCRT系统,进而在溶酶体被降解。然而,由于神经祖细胞内Notch多泛素化修饰效率过低,部分Notch受体的泛素化水平不足以被ESCRT复合体识别并分选进入降解途径。Retromer复合体作为“拆弹专家”,可以及时将这些低泛素化Notch受体“拆除”、运离,并促使它们进入下一个泛素化-ESCRT-溶酶体途径,直至被有效降解。当Retromer复合体功能受损,不能被及时运离的低泛素化Notch受体在多囊泡体内急剧积累,并以配体依赖性方式被异位激活,导致神经祖细胞命运逆转,去分化成为过度增殖的神经干细胞,最终引起可移植、侵染性强的神经祖细胞衍生肿瘤的发生。

该研究揭示的由Retromer复合体介导的保护(safeguard)机制可能代表了一种普适规律。通过该机制,潜在有害或有毒的蛋白受体可以被“拆弹部队”及时拆除并运离,从而避免不良的后果。重要的是,在包括神经胶质瘤在内的多种人类癌症中均发现Retromer 组分表达量的异常降低。因此,该研究也为解析Retromer复合体失活与多种人类癌症相关性的分子机制提供了重要的线索。

北京大学生命科学学院博士生黎波(2014级)和PTN项目博士生黄祖贤(2016级)是该论文的共同第一作者。生命科学学院宋艳研究员是该论文的通讯作者。北大生命科学学院本科生高士洪(现为贝勒医学院博士生)、博士生张如兰(2017级)、李毓龙组博士生孙荣浡和李毓龙研究员参与了该课题的研究。生科院电镜平台为该研究提供了技术支持和帮助。该研究工作是宋艳研究组继2017年Developmental Cell封面文章后发表的又一篇关于神经干细胞谱系细胞命运锁定的研究论文,得到了国家自然科学基金、北大-清华生命科学联合中心和细胞增殖与分化教育部重点实验室的资助。
植物能够持续萌发新的枝、叶、花与果实,以顽强的生命力激发人们对生命永续的遐想。这一生命律动都源于核心细胞群——植物干细胞。它们分布于茎顶端、根尖等“生长中枢”,通过精确的分裂与分化,绘制植物生长蓝图。......
11月30日,第六届中国干细胞与再生医学协同创新平台大会在北京召开。大会以“规范?融合?创新”为主题,旨在搭建高水平交流与合作平台,汇聚各方力量共商干细胞与再生医学领域标准化建设、资源整合与协同创新大......
在国家重点研发计划、国家自然科学基金等项目资助下,中国科学院广州生物医药与健康研究院研究员潘光锦、副研究员单永礼团队成功揭示了一种限制人多能干细胞发育潜能的关键因子——去泛素化酶USP7,并深入阐释了......
No.1溶酶体溶酶体是细胞内的“消化车间”,其内部的酸性环境和丰富水解酶能降解各种生物大分子。对于药物递送而言,溶酶体是一把双刃剑:作为细胞的“消化车间”,溶酶体能高效降解外来异物,这是细胞天然的防御......
清华大学副教授邵玥团队与合作者利用人多能干细胞,首次在体外培养出一种包含胃底和胃窦双极分布的胃器官发育模型,破解了WNT信号梯度悖论,建立了微尺度组织定向组装技术,可对类胃囊中不同谱系的组织模块独立开......
“这里将百年历史积淀与现代医学教育完美融合,这种传承与创新的平衡令人印象深刻。”9月3日下午,安徽医科大学新医科中心(新校区)迎来一位国际“大咖”:诺贝尔生理学或医学奖得主、英国卡迪夫大学教授马丁·埃......
【聚焦细胞治疗新纪元,共启产业转化新征程】2025年,中国细胞产业迎来爆发式突破:首款干细胞疗法获批上市、博鳌乐城首发收费清单、实体瘤细胞药物申报上市、国家政策力推抗衰老领域……行业正以前所未有的速度......
十年积淀,IGC2025-广州站第十届细胞及衍生物研发与产业化大会将在10月23-24日于广州再度创新启航!IGC广州站以“政策催化与技术创新,挖掘细胞产业应用多样性”为主题,从主会场与四大专场论坛出......
美国科学家首次利用干细胞培育出具有完整血管网络的肺类器官。这些“迷你”肺与人类肺部的发育过程高度相似。这项发表于《细胞》杂志的最新成果,不仅揭开了人类早期发育的奥秘,也为构建肠道和结肠等其他血管化器官......
在受伤后,一些涡虫几乎可以再生体内的所有细胞,墨西哥钝口螈可以重建整个四肢和部分大脑,斑马鱼可以修复断裂的脊髓,绿安乐蜥则能重新长出尾巴。鱼类、两栖动物、爬行动物和蠕虫展现的再生能力令研究人员着迷已久......