10月17日,《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)在线发表了生物大分子国家重点实验室许瑞明、饶子和课题组和北京生命科学研究所(NIBS)朱冰课题组合作的最新研究成果Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1。
组蛋白甲基化是表观遗传学的核心内容之一,其中关于甲基化的识别是近年来研究的热点。甲基化识别蛋白是表观遗传信号的执行者,它们特异地识别不同位点、不同形式的甲基化修饰,把信号传递给下游与其相互作用的分子,行使表观遗传的生物学功能。许瑞明课题组基于前期基础研究(Genes & Dev. 2003;Science 2006;Genes & Dev. 2009),此次在人源Spindlin1蛋白识别组蛋白H3第4位赖氨酸的三甲基化修饰(H3K4me3)研究中又取得了进一步成果。
人源Spindlin1蛋白最早作为纺锤体结合蛋白被发现(Dev. 1997)。2007年,饶子和课题组解析了Spindlin1蛋白的三维晶体结构(JBC 2007)。2011年,NIBS朱冰课题组发现Spindlin1定位在核内活性rDNA重复区,可识别组蛋白H3K4甲基化修饰,进而促进rDNA基因的表达(EMBO Reports 2011)。基于之前的研究结果,许瑞明课题组与朱冰研究员和饶子和教授开展了Spindlin1与组蛋白H3K4me3识别的结构机理研究。
结果表明,Spindlin1包含三个串联重复的Tudor结构域,其中只有Tudor II可以结合一个H3K4me3肽段(图A)。通过结构分析比较及体内外功能实验检测,研究人员们发现了Spindlin1蛋白识别H3K4me3的独特机制:首先,可结合甲基化赖氨酸残基的疏水口袋由4个芳香族残基组成(图B),比其他已知的Tudor结构域识别口袋都多了1个残基,这样的包围的更加紧密,同时对周围的环境要求也更加苛刻;其次,除了构成疏水口袋的芳香族残基,Spindlin1的极性天冬氨酸残基也与H3蛋白N端的精氨酸残基有多处较强的相互作用,分别对D184和D189残基进行突变,不同程度地影响了Spindlin1与H3K4me3肽段的结合能力,下调了体内rRNA基因的转录水平,这些极性相互作用确保了K4位点识别的特异性。
该项研究工作得到科技部、国家自然科学基金委员会和中国科学院的资助。
Spindlin1蛋白识别组蛋白H3K4me3的结构示意图
近日,中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)和佛山鲲鹏现代农业研究院研究员唐中林团队在国际期刊《肠道微生物》(GutMicrobes)上发表论文。该研究揭示......
美国加州大学旧金山分校团队发现,小鼠体内存在一种分子计时器,在怀孕最初几天就会被激活,并影响小鼠的分娩时间。如果相同的一组分子在人类妊娠中所起的重要作用也被证实,未来将有助于识别有早产风险的女性,并采......
记者10月6日从华中农业大学获悉,该校棉花遗传改良团队开发出基于CRISPR/dCas13(Rx)的新型植物RNA甲基化编辑工具。研究成果日前发表于《先进科学》杂志。N6-甲基腺苷(m6A)是真核生物......
近日,上海交通大学医学院附属仁济医院薛婧、王宇团队与上海交大基础医学院唐玉杰,浙江大学王超尘等国内外研究者合作在Gut期刊发表的最新研究成果,就揭示了经由内源性逆转录病毒元件(EndogenousRe......
表观遗传指的是在不改变DNA序列的情况下,基因表达和生物性状的可继承变化。细胞命运决定包括细胞身份的维持和转换,这就涉及到表观遗传信息的继承性和可塑性,是生命科学领域的重点前沿方向。生命的"......
DNA甲基化是表观遗传修饰的重要组成部分,可以通过改变染色质的结构、DNA的稳定性以及DNA和蛋白质的结合程度调控基因表达。在植物DNA甲基化的建立和维持过程中,植物特有的RNA聚合酶V(PolV)通......
在《自然》杂志上最新发表的一项研究中,由斋藤通纪领导的日本京都大学人类生物学高级研究所团队,确定了人类生物学中驱动表观遗传重编程和分化机制的重要条件,这标志着人类体外配子生成(IVG)研究中一个新的里......
近日,中国科学院上海营养与健康研究所AndrewE.Teschendorff研究组在《自然-衰老》(NatureAging)上,发表了题为Quantifyingthestochasticcompone......
图片表示从人类原始生殖细胞样细胞(绿色)到人类有丝分裂前精原细胞(红色)的体外分化。科技日报北京5月23日电(记者张梦然)在《自然》杂志上最新发表的一项研究中,由斋藤通纪领导的日本京都大学人类生物学高......
植物是复杂的生物系统。植物体内基因的表达受到多种水平的调控,如转录水平、转录后水平、DNA甲基化/去甲基化等,从而对基因表达进行精密高效的调控。中国科学院遗传与发育生物学研究所张劲松研究组筛选OsEI......