发布时间:2021-05-24 13:12 原文链接: 石墨烯AFM测试详解

单层石墨烯的厚度为0.335nm,在垂直方向上有约1nm的起伏,且不同工艺制备的石墨烯在形貌上差异较大,层数和结构也有所不同,但无论通过哪种方法得到的最终产物都或多或少混有多层石墨烯片,这会对单层石墨烯的识别产生干扰,如何有效地鉴定石墨烯的层数和结构是获得高质量石墨烯的关键步骤之一。本文材料+小编将为大家揭秘石墨烯AFM测试。


石墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM扫描电子显微镜、SEM和原子力显微分析AFM为主而图谱类则以拉曼光谱Raman红外光谱IRX射线光电子能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜一般用来判断石墨烯的层数而IRX、XPS和UV则可对石墨烯的结构进行表征,用来监控石墨烯的合成过程。本文主要为大家揭秘石墨烯烯AFM测试。

AFM表征


图1 AFM的工作原理图


图2 AFM工作的三种模式


关于AFM的原理这里就不多说了,目前常用的AFM工作模式主要有三种:接触模式,轻敲模式以及非接触模式。这三种工作模式各有特点,分别适用于不同的实验需求。


石墨烯的原子力表征一般采用轻敲模式(TappingMode):


敲击模式介于接触模式和非接触模式之间,是一个杂化的概念。悬臂在试样表面上方以其共振频率振荡,针尖仅仅是周期性地短暂地接触/敲击样品表面。这就意味着针尖接触样品时所产生的侧向力被明显地减小了。因此当检测柔嫩的样品时,AFM的敲击模式是最好的选择之一。一旦AFM开始对样品进行成像扫描,装置随即将有关数据输入系统,如表面粗糙度、平均高度、峰谷峰顶之间的最大距离等,用于物体表面分析


优点:很好的消除了横向力的影响。降低了由吸附液层引起的力,图像分辨率高,适于观测软、易碎、或胶粘性样品,不会损伤其表面。


缺点:比ContactModeAFM的扫描速度慢。

AFM表征石墨烯原理


AFM可用于了解石墨烯细微的形貌和确切的厚度信息,属于扫描探针显微

镜,它利用针尖和样品之间的相互作用力传感到微悬臂上,进而由激光反射系统检测悬臂弯曲形变,这样就间接测量了针尖样品间的作用力从而反映出样品表面形貌。因此,表征方法主要表征片层的厚度、表面起伏和台阶等形貌,及层间高度差测量。


原子力显微技术是判定是否是石墨烯的最好的表征方法,因为能够直接用它就能观察到石墨烯的表面形貌,同时还能测出此石墨烯的厚薄程度,然后再与单层的石墨烯的厚度进行对比,从而确定是否存在单层石墨烯。但是AFM也有缺点,就是它的效率很低。这是因为在石墨烯的表面常会有一些吸附物存在,这会使所测出的石墨烯的厚度会略大于它的实际厚度。



图3 石墨烯的结构图和其AFM图像[1,2]


图3中a显示的是单层的碳原子进行紧密排列而构成的二维的点阵结构;图b显示的是石墨烯的AFM图像,扫描探针显微结构中,AFM可以直接观测到其表面形貌,并测出厚度,但是最大的缺点就是效率低,而且由于表面不纯净,常会有吸附物存在,导致测出的厚度要稍大于实际厚度。

AFM表征及图像分析举例


不同基底对厚度的影响


AFM 表征是鉴别石墨烯最直观的证据,可以通过表面形貌及厚度而确定其存在。缺点是效率低,同时由于基底的影响和表面吸附物的存在,测得的实际厚度往往比石墨单原子层的理论厚度(0.34 nm)要大。


如 HOPG 上单层石墨烯的厚度约为 0.4 nm,云母表面的单层石墨烯厚度往往在 0.5~1 nm,而氧化物基底上单层石墨烯的厚度约为0.8~1.2 nm之间,伴随着0.35 nm左右的叠加层(图4),这与范德华力层间距是一致的。


图 4 SiO2基底上单层石墨烯的 AFM 高度图。图中比例尺为 1 μm[3]。

图 5 a 单层石墨烯在SiO2衬底上的AFM图。b单层石墨烯在云母衬底上的AFM图。c单层石墨烯在云母衬底上、云母衬底、石墨烯片层在SiO2衬底上以及SiO2衬底的高度统计分布图[4]。


对于 GO (氧化石墨烯或石墨氧化物)和 rGO(还原的氧化石墨烯),由于其表面含有大量的含氧官能团,AFM 下单层的厚度和表面粗糙度都要大于原始石墨烯(pristine graphene),如单层 GO 的厚度在云母表面上约为 0.8 ~ 1.0 nm,而在 SiO2表面上为 2 nm 左右。Lui 等研究者[4]发现沉积在基底表面的石墨烯为了维持自身稳定性会在表面形成波纹状的起伏,而当沉积在云母表面时具有最小的表面粗糙度,是最“平”的石墨烯(图 5)。


GO、rGO与Graphene的AFM图区别


石墨经过氧化后,层间距会增大到0.77nm左右。剥离后的氧化石墨烯吸附在云母片等基底上,会增加0.35nm左右的附加层,所以单层氧化石墨烯在AFM下观测到的厚度一般在0.7-1.2nm左右。将氧化石墨烯沉积在云母片上,利用蔗糖溶液还原后进行AFM表征,如图6所示,图中的高度剖面图(ΔZ)对应着图中两点(Z1、Z2)的高度差即石墨烯的厚度,同时若将直线上测量点选择在石墨烯片层的两端,还可以粗略测量石墨烯片层的横向尺寸(distance)。


图6 石墨烯的AFM图像和高度剖面图[5]


不同还原方法得到的GO、rGO的AFM区别


Si 等[6]进行了硼氢化钠为还原剂制备RGO 的研究。通过观察AFM 图像,他们发现GO 的横向尺寸为几个微米,厚度为1 nm,但是经过化学还原为RGO 后, 其横向尺寸从几百纳米到几个微米变动,厚度大约为1.2 nm。实验过程中的超声处理可能会使GO 引入一些小孔状的缺陷, 这也是AFM 显示RGO 厚度增加到10 μm 的原因。


Chen 等[7]还采用微波还原GO 得到RGO。AFM分析表明,对于厚度为0.8 nm 的GO,微波还原的产物GNS 厚度约为0.45 nm,接近于GNS 的理论厚度(大约为0.35 nm)。而当GO 边缘有环氧基、羟基、羧基存在时,GNS 片层的厚度就会增加。说明微波处理后,GO 被还原为单层GNS。这种方法可以制备微米尺寸的GNS。


Williams 等[8]用UV 处理GO 得到RGO。AFM 图显示,GO 的厚度为1.7nm,而经UV 处理后厚度仅为0.9 nm,横向尺寸为几百纳米到几个微米。RGO 比GNS 理论厚度要大得多, 这主要归因于RGO 纳米片边缘的一些溶剂分子和残余氧的存在。

AFM表征石墨烯的优缺点


由于单层石墨烯理论厚度很小,在扫描电镜中很难观察到。原子力显微镜是表征石墨烯片层结构的最有力、最直接有效的工具。它可以清晰的反映出石墨烯的横向尺寸、面积和厚度等方面的信息,但一般只能用来分辨单层或双层的石墨烯。


原子力显微镜可以表征单层石墨烯,但也存在缺点:耗时且在表征过程中容易损坏样品;此外,由于C键之间的相互作用,表征误差达0.5nm甚至更大,这远大于单层石墨烯的厚度,使得表征精度大大降低


由于石墨烯厚度仅为1个至几个原子层,晶体的缺陷和表面吸附物质的不同,都会引起表征结果的不同。在实际研究中,往往需要根据需要选取合适的表征方法把得到的结果互相比较,互相印证才能得到关于石墨烯的准确信息


相关文章

他们在实验室“种”出世界最长石墨烯纳米带

自2004年英国科学家用胶带从石墨层上“撕”出石墨烯并在6年后获得诺贝尔物理学奖以来,这种二维材料已成为备受瞩目的“新材料之王”。石墨烯具有超高的载流子迁移率,导电性能优异,是未来高性能电子器件与芯片......

关键一步!超高质量石墨烯纳米带制备迎来突破

3月28日,上海交通大学物理与天文学院教授史志文、以色列特拉维夫大学教授MichaelUrbakh、深圳先进技术研究院教授丁峰和武汉大学教授欧阳稳根合作,开发了一种生长石墨烯纳米带的全新方法,实现超高......

上海微系统所石墨烯量子点荧光发光机制研究获进展

近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯量子点制备及荧光机制研究方面取得进展。该工作深化了关于石墨烯量子点发光机理的认知,阐释了多变量体系下机器学习辅助材料制备......

惊人!实验室级仪器2分钟内制备400mm×400mm石墨烯玻璃

成果简介可扩展、高效且成本经济的石墨烯制备方法是促进石墨烯实际应用的关键。近年来,研究人员在提高合成效率和降低生产成本方面做出了大量努力,尤其是化学气相沉积法。然而,由于合成条件复杂,其效率和均匀性难......

石墨烯量子点领域研究获系列进展

石墨烯量子点、碳点等零维碳纳米材料以其独特的光学、电学性质,在近年来受到了广泛关注,然而sp2-sp3混合杂化碳纳米结构带来的复杂体系使得该类材料的光致发光机制研究面临挑战。目前研究手段分为控制变量实......

ABC三层石墨烯中的电子红外声子耦合研究获进展

堆垛是二维层状材料一个独特的结构自由度,在对称性破缺和各种新奇的电学、光学、磁学以及拓扑现象等方面发挥着重要作用。例如,与具有中心对称性的2H堆垛双层二硫化钼形成明显对比,3R堆垛双层二硫化钼的空间反......

石墨烯中观察到分数量子反常霍尔效应,奇异电子态可实现更强大量子计算

分数量子霍尔效应通常在非常高的磁场下出现,但麻省理工学院的物理学家现在在简单的石墨烯中观察到了它。在5层石墨烯/六方氮化硼(hBN)莫尔超晶格中,电子(蓝球)彼此强烈相互作用,并且表现得好像它们被分解......

首次人体受控临床试验证实,石墨烯纳米材料可安全开发

英国研究人员公布了一项重要的发现:首次人体严格受控暴露临床试验显示,吸入特定类型的石墨烯不会对肺或心血管功能产生短期不良影响。这意味着石墨烯这种纳米材料可以安全地进一步开发,而不会对人类健康造成重大风......

中美团队制成世界首个功能性石墨烯半导体

天津大学教授马雷联合美国佐治亚理工学院WalterdeHeer团队,首次制成了可扩展的半导体石墨烯,这可能为制造比现在的硅芯片速度更快、效率更高的新型计算机铺平道路。石墨烯是一种由单层碳原子制成的材料......

打开石墨烯带隙,开启石墨烯芯片制造领域大门

天津大学纳米颗粒与纳米系统国际研究中心的马雷教授团队攻克了长期以来阻碍石墨烯电子学发展的关键技术难题,在保证石墨烯优良特性的前提下,打开了石墨烯带隙,成为开启石墨烯芯片制造领域大门的重要里程碑。该研究......