中国科学技术大学生命科学与医学部教授许超、张凯铭与西班牙分子生物学中心教授Encarna Martínez-Salas合作,利用单颗粒冷冻电镜技术解析了人源Gemin5基因产物羧基端结构域的三维结构——十聚体,揭示了Gemin5羧基端结合mRNA并调控其翻译的分子机制。研究结果发现,Gemin5羧基端发生突变导致其十聚体结构破坏,是引发神经系统疾病的重要原因。相关成果9月2日在线发表于《自然-通讯》。
Gemin5 羧基端十聚体冷冻电镜结构及其调控mRNA翻译的分子机制示意图 中国科大供图
Gemin5最早在运动神经元存活(SMN) 复合体中被发现,是SMN复合物中最大的亚基,其基因缺陷导致神经系统疾病的发生。
许超解释说,“Gemin5的两个部分分别通过结合不同类型的RNA来执行不同的生物学功能。前一部分结构与RNA剪切相关,后一部分的结构则与RNA翻译功能有关。”
2016年,许超课题组揭示了Gemin5氨基端WD40结构域识别小核RNA(snRNA)的机制。“但Gemin5另外一半结构到底是什么样?它的基因突变又是如何导致神经系统疾病产生,一直都不清楚。”许超说。
此次研究中,课题组人员利用冷冻电镜技术解析了Gemin5羧基端的三维结构,发现Gemin5羧基端通过疏水作用形成十聚体。许超说,“这种由双五聚体组成十聚体的结构在RNA结合蛋白质中还属首次发现。”
研究还发现,Gemin5羧基端十聚体形成对结合mRNA是必需的;G5C十聚体通过带正点的表面与带负电的RNA以静电方式相互作用。
“简单来说,人体内的Gemin5基因发生突变,如果导致Gemin5十聚体被破坏或者静电表面不存在了,就不能再结合RNA,这样就损害了Gemin5调控神经发育的功能,从而导致神经系统疾病的发生。”许超进一步分析说。
此次工作为进一步研究Gemin5缺陷导致神经系统疾病的机理,以及Gemin5独立于SMN复合物的生物学功能提供了结构基础。
审稿人认为,“这个结构非常有趣,他们分析了导致疾病发生的基因突变,并且通过突变实验支持结论。”“整体而言,这个电镜结构具有很高的质量,这些结果对于RNA领域的研究人员具有重要意义。”
中国科学技术大学郭光灿院士团队的李传锋、王健研究组利用光纤微腔与中性原子的普塞尔区域耦合,实现了超快高保真度的原子态读出,其速度和保真度均创造公开报道最高纪录。这对于降低量子计算中的时间和物理资源消耗......
日前,自然指数2025年度研究领导者揭晓。在2025自然指数研究领导者全球高校TOP500中,中国内地高校占153所,较去年增加18所。中国科学技术大学位列内地高校第一、全球高校第二。浙江大学、北京大......
由美国俄勒冈健康与科学大学主导的研究团队,在探索脑微观世界的道路上迈出重要一步:他们利用冷冻电子显微镜,首次揭示了大脑与小脑区域关键神经受体的结构和形态。这项研究发表在最新一期《自然》上,为理解运动控......
近日,教育部公布2024年度普通高等学校本科专业备案和审批结果及《普通高等学校本科专业目录(2025年)》,中国科学技术大学申报的“机器人工程”和“大数据管理与应用”2个本科专业成功获批。此次新增的“......
由新加坡科技研究局基因组研究所领导的科学家团队,发布了迄今全球最大、最全面的长读长RNA测序数据集之一——新加坡纳米孔表达数据集(SG-NEx)。这一成果有望解决疾病研究中长期存在的技术瓶颈,使研究人......
4月15日,中国工程院院士、中国科学院亚热带农业生态研究所首席研究员印遇龙领衔的单胃动物营养研究团队在科技合作和成果转化上取得新进展。其团队博士生王芳以“RNA技术研发与产业化应用”为主的项目,历经初......
近日,中山大学生命科学学院教授张锐团队首次提出名为MIRROR的全新内源性ADAR招募gRNA设计理念,显著提高了RNA编辑效率,这一突破为RNA编辑技术走向临床应用注入了强劲动力,同时也为相关疾病的......
记者7日从中国科学院深圳先进技术研究院了解到,该院研究员李汉杰团队在人体外周神经系统内发现了小胶质细胞,刷新了过去科学界认为这种“免疫哨兵”只存在于大脑和脊髓的观点,为进一步研究外周神经系统发育及相关......
中国科学院分子细胞科学卓越创新中心陈玲玲研究组揭示了双链RNA依赖的蛋白激酶R(PKR)在阿尔茨海默病(AD)发生与进展过程中异常激活的分子病理特征,开发了基于具有分子内短双链结构环形RNA(ds-c......
今天,国家医保局发布《神经系统医疗服务价格项目立项指南》,其中专门为脑机接口新技术单独立项,设立了侵入式脑机接口植入费、取出费,非侵入式脑机接口适配费等价格项目,这意味着,一旦脑机接口技术成熟,快速进......