ICP-TOF

电感耦合等离子体-飞行时间质谱

image.png

人造纳米颗粒应用于各个领域,和天然纳米颗粒一并在环境中广泛分布。纳米颗粒在粒径、形貌、元素组成等物化性质上均存在异质性,这些异质性决定了不同颗粒在材料性能和生物效应上的差异。因此,单颗粒水平的分析在近年来广受关注。类似地,细胞异质性,包括元素和同位素组成的细胞间差异,使单细胞分析成为一个重要的研究主题。近二十年来,电感耦合等离子体质谱(ICP-MS)因其高灵敏度和鲁棒性而成为检测和表征单个颗粒和细胞元素信息的常规技术,被称为单颗粒ICP-MS(spICP-MS)和单细胞ICP-MS(scICP-MS)分析。

 多元素纳米颗粒(例如核壳颗粒和复合量子点等)在人造纳米颗粒中占相当大的比重。而在地球化学过程中形成的天然纳米颗粒的元素组成往往更为复杂。这些独特的多元素特征(类似于人体指纹)用途广泛,例如用于人造和天然颗粒的区分和溯源等。细胞的化学成分则更加复杂。细胞内的元素或同位素特征可用于研究细胞与元素/同位素特异性外源性物质的相互作用。简而言之,同时检测单个颗粒/细胞上的多种元素或同位素是相关技术发展的必然趋势。

 目前的spICP-MS分析多借助配置四极杆质量分析器的仪器(ICP-Q-MS),难以同时检测单个颗粒/细胞上的多元素/同位素信息。常见的做法是分批次测定不同的元素(图1),然而如此得到的多元素信息无法匹配到同一颗粒/细胞上。已有研究使用“跳峰模式”调节四极杆在两个质量数通道间快速切换实现了单个颗粒/细胞上的双元素/同位素检测(图1)。但由于调整过程中存在不采集信号的稳定阶段,相当一部分的信息会丢失,这也导致了结果的不确定增高。此外,多接收-ICP-MS(MC-ICP-MS)也被用于纳米颗粒的同位素检测。然而法拉第杯检测器对离子云产生的瞬时信号并不敏感,目前难以实现高通量的检测。此外,扇形磁分析器的固有限制决定了只能同时检测质量数接近的元素/同位素,应用范围非常受限。

图1:不同单颗粒/单细胞-多元素/同位素分析策略(分批测定、使用ICP-Q-MS“跳峰模式”测定,以及使用ICP-TOF-MS和MC-ICP-MS测定)的示意图。(引自论文1)

       新兴的基于飞行时间质量分析器的ICP-MS(即ICP-TOF-MS)克服了上述问题,能够实现高通量、较高灵敏度的单颗粒全元素检测(原理见图2)。和传统的spICP-MS前端一样,合适浓度的纳米颗粒/细胞悬浮液通过雾化引入到ICP焰炬中,颗粒/细胞被完全气化并离子化。每个颗粒/细胞产生的离子云通过离子透镜系统等到达TOF质量分析器。在TOF质量分析器中,离子云中所有的离子被相同的加速电压加速,因此获得了相同的初始动能Ek。根据Ek=1/2(mv2),离子在飞行时间漂移管中的飞行速度的平方与其质量成反比。根据d=vt,在相同的飞行距离d下,离子飞行时间t的平方与质量成正比。因此,依据飞行时间的不同,离子云中的离子将依据质荷比(单电荷下即质量)从轻到重依次到达检测器,产生显著高于背景的峰信号,连同基线信号被仪器电脑完整记录。离子在加速后能够在数十微秒内到达微通道板检测器而产生响应,在如此小的时间尺度下可近似认为颗粒中的所有元素(6-280 Th)被同时检测。

image.png

图2 单颗粒/单细胞-ICP-TOF-MS检测原理。(引自论文1)

 为探究上述单颗粒/单细胞技术的多元素/多同位素分析能力,中科院生态环境研究中心阴永光研究员团队使用ICP-Q-MS、ICP-TOF-MS和MC-ICP-MS检测单个银纳米颗粒和经银暴露的蓝藻细胞上的107Ag和109Ag同位素,将所测同位素比值与天然丰度相比较来定量评估结果的准确性。结果表明,ICP-Q-MS的结果受颗粒/细胞所产生的离子云的持续时间以及驻留时间和稳定时间等多个条件的影响。MC-ICP-MS和ICP-TOF-MS所采集的几乎所有瞬时事件均能同时检测到两种同位素,并且比值的准确性较ICP-Q-MS高(图3A,所测同位素比值分布在天然丰度值109Ag:107Ag=0.929附近)。此外,ICP-TOF-MS的通量较高,每秒可检测10~20个颗粒/细胞。值得一提的是,ICP-TOF-MS能够同时检测全元素(6-280 Th),这在单细胞分析中优势尽显。以本研究为例,分析物为暴露于纳米银颗粒的蓝藻细胞,传统scICP-MS一般只能着眼于单一的Ag信号,无法区分该Ag信号到底是来自游离的纳米颗粒还是吸附或摄入颗粒的细胞。ICP-TOF-MS可在检测Ag的两种同位素的同时监测细胞内源元素,如生物膜和核酸的组成元素P。若检测到Ag峰信号的瞬间同时也检测到P的峰信号,则可认为该信号来自细胞,反之则为游离纳米颗粒。图3C和D为峰信号的强度分布图,可见待测悬浮液中除了含银量较高的细胞外,还存在一些较小的游离纳米颗粒。这一信号筛选方法无需任何的标记处理。除了区分细胞与纳米颗粒之外,基于细胞特征性元素指纹完整与否,该方法还可用于例如完整细胞与细胞碎片等的区分,可在很大程度上提高scICP-MS数据的有效性。

image.png

图3 (A)单个颗粒/细胞上107Ag和109Ag信号强度之间的相关性。(B)单个颗粒/细胞上109Ag:107Ag比值相对于比值平均值相对偏差(SD)。虚线和实线曲线为基于泊松计数统计的±1SD和±2SD值。(C)和(B) 同时检测到和未检测到31P信号的107Ag峰信号强度分布。(均使用icpTOF 2R ICP-TOF-MS测定,分析物为80 nm 银纳米颗粒和暴露于10 nm银纳米颗粒的蓝藻细胞)。(引自论文2)

 ICP-MS的检测本质上是对待测分析物产生的离子的计数,在低计数下会受到泊松噪声的影响。简而言之,信号强度是影响结果准确性的一个重要因素。图3B显示,随着峰信号强度的增加,所测得的同位素比值偏差减小。文中研究所使用的TOFWERK公司的 icpTOF 2R ICP-TOF-MS具有高质量分辨率,而灵敏度相对较低。预计具有更高灵敏度的icpTOF S2 ICP-TOF-MS将在单细胞/单颗粒同位素比值结果准确性上拥有更好的表现,同时提供广谱的元素信息。

团队介绍:

     中科院生态环境研究中心阴永光研究员团队已于TrAC Trends in Analytical Chemistry,Analytica Chimica Acta和Chemical Communications等著名学术期刊上发表关于单颗粒/单细胞-ICP-TOF-MS的原理、方法及应用的一系列研究成果。博士生田祥伟为第一作者,相关研究受到山东英盛生物技术有限公司崔文斌博士和中科院高能物理所王萌老师的合作支持。

参考文献

1 Tian et al., Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications, TrAC Trends in Analytical Chemistry, Volume 157, 2022, 116746

https://doi.org/10.1016/j.trac.2022.116746

2 Tian et al., Exploring the performance of quadrupole, time-of-flight, and multi-collector ICP-MS for dual-isotope detection on single nanoparticles and cells, Analytica Chimica Acta Volume 1240, 2023, 340756

https://doi.org/10.1016/j.aca.2022.340756

3 Tian et al., Single-cell multi-element analysis reveals element distribution pattern in human sperm, Chemical communications, Issue 28, 2023

https://doi.org/10.1039/D3CC01575K

阴永光,中国科学院生态环境研究中心研究员、博士生导师。主要研究方向为有毒金属的形态分析与环境转化。以第一/通讯作者在Chemical Reviews、Nature Communications、ACS Nano、Environmental Science & Technology、 Water Research等杂志上发表论文100余篇。基金委优秀青年基金获得者,获中国分析测试协会一等奖、北京市科学技术奖二等奖、贵州省自然科学一等奖、中国化学会青年环境化学奖等。

END

相关文章

20242025年MALDI、ICPMS新品自研首创新趋势!

近两年,MALDI质谱与ICP-MS等同样经历了更新迭代以及新技术的突破发展。本篇整理了MALDI质谱及ICPMS近两年新品。(液质联用、气质联用见前述三篇(2024-2025年液质联用新品多级串联多......

20242025年液质联用新品多级串联多种碎裂操控离子随心所欲(下篇)

(接上篇 2024-2025年液质联用新品多级串联多种碎裂操控离子随心所欲(上篇)) Waters&科华生物2025年3月,沃特世与科华生物联合推出两款应用于体外诊断领域的......

20242025年液质联用新品多级串联多种碎裂操控离子随心所欲(上篇)

掌控质谱奥秘的关键两大要素,一是离子源,产生气态离子使其飞进质谱;二是分析器,操控离子产生各种分离。离子源在前几年的创新达到井喷,还有继续的创新不断涌现;质量分析器产生串联后,又可产生不同的碎裂方式。......

艾立本科技PTRTOFMS6000申报ANTOP气体分子解码大师奖,大众评审诚邀投票!

2025年ANTOP奖评审正在火热进行中。由成都艾立本科技有限公司申报的“ANTOP气体分子解码大师奖”进入大众评审阶段。在此诚邀业界各位老师为成都艾立本科技有限公司的VOCs质子转移反应-飞行时间质......

艾立本科技BreathTOFMS2000申报ANTOP呼吸密码破译奖,大众评审诚邀投票!

2025年ANTOP奖评审正在火热进行中。由成都艾立本科技有限公司申报的“ANTOP呼吸密码破译奖”进入大众评审阶段。在此诚邀业界各位老师为成都艾立本科技有限公司的人体呼出气检测质谱仪Breath-T......

德国耶拿高分辨ICPOES助力分析钕铁硼永磁材料

科技多样性,守护国家战略资源稀土永磁材料在国家战略中处于核心地位,精准分析成为保障资源安全的关键。德国耶拿高分辨ICP-OESPlasmaQuant9100Elite助力磁材行业质量提升,为出口管控提......

Q1质谱仪8亿采购:进口国产平分秋色?(其二:气质、MALDI、ICP篇)

上篇我们分析了一季度8.3亿的质谱市场总体情况以及液质市场近5亿元的品牌角逐(详见:第一季度8亿质谱仪采购:五巨头品牌谁是赢家?(其一:总体+液质篇))。本篇我们将介绍气质联用仪、MALDI质谱以及I......

布鲁克在ASMS2025:发布5项最新质谱科技,加速科学研究

2025年6月1日-5日,第73届美国质谱学会年会(ASMS2025)在美国马里兰州巴尔的摩会议中心隆重召开。作为质谱领域最具影响力的国际盛会,本次会议汇聚了超过6500位全球顶尖科学家、企业代表和行......

安捷伦智能LC/MS与GC/MS创新成果亮相ASMS2025

助力实验室效率与可持续发展迈向新高度2025年6月3日,北京——安捷伦科技公司在第73届ASMS质谱与相关专题会议(ASMS2025)上重磅发布新一代质谱创新解决方案。作为分析与临床实验室技术领域的全......

聚焦光谱技术前沿与应用,第四届全国光谱大会圆满落幕

2025年5月9日-10日,由北京理化分析测试技术学会光谱专业委员会主办的第四届全国光谱大会在湖南郴州成功召开。本次大会设置28个邀请报告,汇聚了来自全国各地的专家学者,共同探讨光谱技术的最新进展,充......