发布时间:2020-10-05 18:46 原文链接: 空间硬件的电气接地方法解析(二)

4、 单点/多点接地:虽然接地参考平面的建立需要一个单点地,但在实际应用中按此要求进行系统设计存在一定的问题。现代电子系统很少只有一个地平板,为了减少可能的干扰,尽可能同时使用多个地平板。

由图2可知,一组接地平板,通过最短路径返回接到系统接地点,在此形成总的系统电位参考,此种系统称为单点接地系统。但当所用互联屏蔽电缆的有效长度与信号波长可比拟时和在设备的机壳间或分系统间及其他分系统的地线之间存在寄生电容时,这种接地法就会出现问题。可以论证,一个“多点”接地系统,它将每一个分系统或设备都尽可能直接接到一个低阻抗等电位的地平板上,能够减少这些电磁干扰问题。

这种系统设计的示例见图3。其中每个分系统都直接连接到一个共同的地平板上,一个理想化的平坦的等电位平板。

图2 单点接地

图3 多点接地

5.混合接地在实际应用中,接地方式的选择取决于低电平电路的最高有效工作频率以及设备的物理布局。如图4所示,单点接地方式适用于低频和小尺寸,而多点接地适用于高频和大尺寸。对于过渡情况,单点、多点接地各有优缺点,如图4所示。在这种过渡区域应采用混合接地方式,即低频部分采用单点接地,高频部分采用多点接地。

图4 混合接地

6、防电击:当系统发生故障或带电元件与设备底架、框架、壳体误连接时,设备金属部分就会带有危险电压,正确的接地可防止人员在此情况下因接触设备而受电击。同时,壳体电压升高受到限制而使电流下降到不至于危害设备及发生其他连锁反应的电平。通常,应限制机壳电压升高以防止有害电流的产生。表1总结了交流和直流的电击影响: