等电聚焦电泳法测定蛋白质的等电点
| 实验方法原理 |
实验原理 蛋白质分子是典型的两性电解质分子。它在大于其等电点的 pH 环境中解离成带负电荷的阴离子,向电场的正极泳动,在小于其等电点的 pH 环境中解离成带正由荷的阳离子,向电场的负极泳动。这种泳动只有在等于其等电点的 pH 环境中,即蛋白质所带的净电荷为零时才能停止。如果在一个有 pH 梯度的环境中,对各种不同等电点的蛋白质混合样品进行电泳,则在电场作用下,不管这些蛋白质分子的原始分布如何,各种蛋白质分子将按照它们各自的等电点大小在 pH 梯度中相对应的位置处进行聚焦,经过一定时间的电泳以后,不同等电点的蛋白质分子便分别聚焦于不同的位置 。这种按等电点的大小,生物分子在 pH 梯度的某一相应位置上进行聚焦的行为就称为“等电聚焦”。等电聚焦的特点就在于它利用了一种称为两性电解质载体的物质在电场中构成连续的 pH 梯度,使蛋白质或其他具有两性电解质性质的样品进行聚焦,从而达到分离、测定和鉴定的目的。 两性电解质载体,实际上是许多异构和同系物的混合物,它们是一系列多羧基多氨基脂肪族化合物,分子量在 300~1000 之间。常用的进口两性电解质为瑞典 Pharmacia-LKB 公司生产的 Ampholine 和 Pharmalyte,价格昂贵。国产的有中国军事医学科学院放射医学研究所和上海生化所生产的两性电解质,价格便宜,质量尚佳。两性电解质在直流电场的作用下,能形成一个从正极到负极的 pH 值逐渐升高的平滑连续的 pH 梯度。若不同的 pH 值的两性电解质的含量与 pI 值的分布越均匀,则 pH 梯度的线性就越好。对 Ampholine 两性电解质的要求是缓冲能力强,有良好的导电性,分子量要小,不干扰被分析的样品等。 在聚焦过程中和聚焦结束取消了外加电场后,如保持 pH 梯度的稳定是极为重要的。为了防止扩散,稳定 pH 梯度,就必须加入一种抗对流和扩散的支持介质,最常用的这种支持介质就是聚丙烯酰胺凝胶。当进行聚丙烯酰胺凝胶等电聚焦电泳时,凝胶柱内即产生 pH 梯度,当蛋白质样品电泳到凝胶柱内某一部位,而此部位的 pH 值正好等于该蛋白质的等电点时,该蛋白质即聚焦形成一条区带,只要测出此区带所处部位的 pH 值,即为其等电点。电泳时间越长,蛋白质聚焦的区带就越集中,越狭窄,因而提高了分辨率。这是等电聚焦的一大优点,不像一般的其他电泳,电泳时间过长则区带扩散。所以等电聚焦电泳法不仅可以测定等电点,而且能将不同等电点的混合的生物大分子进行分离和鉴定。 早期的等电聚焦电泳是垂直管式的,其特点是体系是封闭的,不与空气接触,可防止样品氧化。近年来,又发展了超薄层水平板式等电聚焦电泳。此法的优点是加样数量多,节省两性电解质,电泳后固定、染色、干燥都十分迅速简便,其最大优点是防止了电极液的电渗作用而引起正负两极 pH 梯度的漂变。 测定 pH 梯度的方法有四种: 1. 将胶条切成小块,用水浸泡后,用精密 pH 试纸或进口的细长 pH 复合电极测定 pH 值,然后作图。 2. 用表面 pH 微电极直接测定胶条各部分的 pH 值,然后作图。 3. 用一套已知不同的 pI 值的蛋白质作为标准,测定 pH 梯度的标准曲线。 4. 将胶条于-70℃ 冰冻后切成 1 mm 的薄片,加入 0.5 ml 0.01M KCl,用微电极测其 pH。 |
|---|---|
| 试剂、试剂盒 | 丙烯酰胺 甲叉双丙烯酰胺 两性电解质 Ampholine 过硫酸胺 TEMED 磷酸 NaOH 三氯乙酸 |
| 仪器、耗材 | 电泳仪 垂直管式园盘电泳槽一套 注射器与针头 移液管 小烧杯若干 培养皿 直尺 小刀 精密 pH 试纸和带细长复合 pH 电极的 pH 计 塑料薄膜和橡皮筋 |
| 实验步骤 |
仪器和用具 展开 |
| 注意事项 |
附注 展开 |
将高度互补的蛋白质组学技术专长与因美纳行业领先的产品创新和全球市场影响力相结合为因美纳在广阔且持续增长的市场中实现增长奠定基础自2021年末以来,因美纳与SomaLogic即在蛋白质组学联合开发方面开......
6月19日消息,国际顶级期刊《NatureMachineIntelligence》发表了阿里云AIforScience的研究成果LucaOne。这是业界首个联合DNA、RNA、蛋白质的生物大模型。该大......
近日,华南农业大学教授王应祥团队在国家自然科学基金等项目的资助下,研究揭示了模式植物拟南芥泛素连接酶后期促进复合物/细胞周期体(APC/C)调控减数分裂染色体正确分离的分子机制。该研究丰富了蛋白质泛素......
华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心教授郭志前团队,创制了激活型化学遗传学荧光探针,首次在活细胞中监测蛋白质成簇/解聚的精确状态。相关研究近日作为VIP(VeryImpor......
日本名古屋大学研究团队在最新一期《自然·生物技术》杂志上发表了一项名为“内部帽启动翻译”(ICIT)机制的创新研究。该机制下的仿佛戴着帽子的mRNA可产生200倍以上的蛋白质,为治疗癌症和蛋白质合成异......
中国科学院脑科学与智能技术卓越创新中心/上海脑科学与类脑研究中心研究员刘真、孙怡迪,博士后朱文成团队,与复旦大学附属中山医院生殖医学中心主治医师木良善团队、上海交通大学医学院研究员李辰团队合作,描绘了......
图FUSEP化学生物学技术用于系统研究赖氨酸和非赖氨酸泛素化的位点信息在国家自然科学基金项目(22137004、22307062)资助下,清华大学药学院尹航教授团队在蛋白质泛素化研究领域取得新进展,开......
当前人工智能技术和产业有哪些热点?我国人工智能产业发展呈现怎样的特点?12月12日举行的中国科学院人工智能产学研创新联盟2024年会,为这些问题提供了答案。本次年会以“人工智能助力科研范式变革(AIf......
受大自然启发,美国西北大学生物工程师团队开发出一种植入皮下的传感器,可实时跟踪活体动物蛋白质水平的波动,测量炎症标志物的变化。相关论文发表在《科学》杂志上,标志着医学检测领域的一个重要里程碑。为了检测......
北京时间10月23日,在德国德雷斯顿举行的2024HUPO大会颁奖典礼上,备受瞩目的“ClinicalandTranslationalProteomicsAward”(临床转化蛋白质组学奖)荣耀加冕于......