发布时间:2011-07-04 11:36 原文链接: 等离子体所托卡马克等离子体自发旋转研究取得进展

  基于东方超环(EAST)装置的优势,中科院合肥物质科学研究院等离子体所紧跟国际研究热点,发展了先进的二维成像弯晶谱仪和多时点快速往复式探针等诊断手段,开展了低杂波电流驱动下自发旋转的实验研究,重复测量了不同等离子体电流、电子密度、等离子位形以及低杂波功率下芯部和边界的旋转的时空分布,第一次在EAST上同时观察到低杂波电流驱动同时能引起芯部和边界的同电流方向的环向旋转。实验以及理论分析结果发表于近期的《物理评论快报》杂志。

  托卡马克上等离子体旋转及其相应的动量输运在低约束模向高约束模转换、内部输运垒的形成以及抑制电阻壁模等磁流体动力学(MHD)不稳定性上起着重要作用。ITER以及未来的聚变堆由于装置尺寸大、密度高,中性束注入将难以驱动类似现有托卡马克装置上相同量级的旋转。近年来,随着射频波驱动等离子体旋转研究的深入,由射频波引起的自发旋转极有可能提供未来装置稳定运行所需的旋转,因此其实验研究成为目前国际上各大装置上研究热点之一。

  不同于其他装置上的结果,如美国Alcator C-Mod托卡马克装置的实验显示射频波加热时芯部旋转是反等离子体电流方向,而且只局限于等离子体芯部。最近EAST上的实验发现:在低密度低约束模等离子体放电中,低杂波能驱动同电流方向的旋转;同时内感变化与旋转之间并无其他装置上所观察到的明显相关性;而低杂波引起的边界旋转变化(<100ms)远快于芯部的旋转变化(~1s),这可能意味着芯部旋转是由边界向芯部输运造成。基于湍流均分理论和热电压缩的模型很好地预测了芯部旋转的变化,其演化时间尺度和旋转变化与实验观察较为一致。这一实验结果为射频波驱动自发旋转的研究提供了新的实验数据,将促进对自发旋转及动量输运机制的理解。

  该研究由等离子体所十三室先进光谱诊断组和六室边界物理组共同完成,得到了EAST诊断组、真空组、低杂波组和运行组等的大力支持,同时获得了国家自然科学基金的资助。

  

EAST低杂波电流驱动实验中旋转测量结果

相关文章

百万电感耦合等离子体质谱仪采购项目中标公告

一、合同编号:11N42520376X2023801二、合同名称:电感耦合等离子体质谱仪采购项目的合同三、项目编号:310000000230425122169-00025201四、项目名称:电感耦合等......

钢研纳克PlasmaMS400等离子体质谱亮相2023中关村论坛

5月30日,由工业和信息化部、北京市人民政府共同主办,机械工业仪器仪表综合技术经济研究所承办的2023中关村论坛——高端仪器创新发展论坛在京举办。本次论坛以“数智驱动引领未来”为主题,工业和信息化部党......

544项推荐性国家标准公布涉ICP、气相、离子色谱法等

近日,中国国家标准化管理委员会公布《2022年第21号中国国家标准公告》,共544项推荐性国家标准和4项国家标准修改单。本次公布的中国国家标准涉及化工、材料、临床检测、化学、化工、环境、植物、食品等各......

高能量约束先进模式等离子体运行研究取得重要成果

实现高性能等离子体稳态运行是未来聚变堆必须要解决的关键科学问题。近期,中国科学院合肥物质科学研究院等离子体物理研究所核聚变大科学团队发挥体系化建制化优势,取得了系列原创性的前沿物理基础研究成果。1月7......

用氢氖混合冰颗粒冷却1亿度等离子体

 高大的电磁铁——中央螺线管是ITER托卡马克的核心。它既能启动等离子体电流,又能驱动和塑造等离子体。图片来源:ITER在世界上最大的实验性聚变反应堆——正在法国建设国际热核聚变实验堆(IT......

178万!这家公司中标兰州大学串联四级杆质谱仪采购项目

近日,兰州大学发布《357-05兰州大学核科学与技术学院电感耦合等离子体串级四级杆质谱仪器设备采购合同》,北京科瑞华安科技有限公司以178万元中标该项目,详情信息如下:一、合同编号:HT00722D3......

西电承担的国家重大科研仪器研制项目通过验收

2022年12月25日至29日,国家自然科学基金委员会组织专家在西安电子科技大学对该校首个主持的国家重大科研仪器研制项目“临近空间高速目标等离子体电磁科学实验研究装置”进行验收。国家自然科学基金委副主......

湍流模拟揭秘等离子体中能量流动

美国能源部普林斯顿等离子体物理实验室研究人员发现了一种太阳日冕加热过程,它有助解释为什么围绕太阳的大气层——日冕会比太阳表面热得多。这一发现或会提高解决一系列天体物理难题的能力,例如恒星形成、宇宙中大......

中科院高能所在电子束品质提升方面获重要进展

超短超强激光脉冲可以在等离子体中激发梯度超过100GV/m的加速电场,这比传统金属射频腔可以提供的加速电场高了1000倍以上,有望大幅缩小加速器规模,使桌面型粒子源/辐射源成为现实。目前,激光等离子体......

用等离子体采集火星上的资源

原文地址:http://news.sciencenet.cn/htmlnews/2022/8/484642.shtm氧气是创造可呼吸环境的关键,也是为未来的火星农业生产燃料和肥料的起点。利用火星上的资......