定义和来源:
类器官通常是由干细胞或祖细胞在特定的培养条件下自我组织和分化形成的具有三维结构和一定器官功能特征的细胞集合体。
微组织则是由多种细胞类型在体外以特定方式组装形成的具有一定结构和功能的小型组织样结构,其细胞来源可以更广泛,不一定局限于干细胞。
复杂性和组织特异性:
类器官往往能更好地模拟体内器官的复杂结构和细胞组成,具有较高的组织特异性。
微组织的结构和功能相对较简单,对完整器官的模拟程度可能不如类器官。
自我更新和长期培养能力:
类器官通常具有较强的自我更新和长期培养的能力,能够在体外维持较长时间的稳定生长和分化。
微组织的长期培养和自我更新能力可能相对较弱。
应用目的:
类器官主要用于疾病模型构建、药物筛选、发育生物学研究等,对器官发育和疾病机制的研究具有重要意义。
微组织可能更多地用于特定细胞间相互作用的研究,或者作为药物测试的初步模型。
形成方式:
类器官的形成依赖于细胞内在的自我组织能力和特定的培养环境诱导。
微组织的形成可能更依赖于人为的组装和调控。
总体而言,虽然类器官和微组织都在体外模拟组织的特性,但在细胞来源、结构复杂性、功能模拟程度和应用方向等方面存在一定的差异。
尽管人工智能(AI)领域已经取得了显著突破,展现出了前所未有的智能水平,但它们仍然依赖于20世纪50年代奠定计算基础的硅基硬件。假如人们能够摆脱传统束缚,创造出由生物材料构成的计算机,那将会是怎样的一......
尽管人工智能(AI)领域已经取得了显著突破,展现出了前所未有的智能水平,但它们仍然依赖于20世纪50年代奠定计算基础的硅基硬件。假如人们能够摆脱传统束缚,创造出由生物材料构成的计算机,那将会是怎样的一......
VantageMarketResearch最新的全球类器官市场报告中提出,到2032年类器官市场将达到35亿美元,年复合增长率为18%。就在上次提及类器官时,2020年的全球类器官市场规模在5亿美元左......
近年来,利用患者来源的iPSC诱导建立的类器官能够很好的模拟患者临床疾病表型,为研究疾病发病机制提供了有力的模型支持。但是,类器官疾病模型在建立的过程中还存在诸如:批次效应明显,诱导方法稳定性较差以及......
由于对人的认知标准设定得如此之高,现在就担心脑类器官、神经嵌合体或胚胎模型是否应该得到通常给予人类的道德保护,似乎为时过早。现在的科学根本不支持这些担忧,未来必须有非常重大的技术创新才可能面临相关问题......
今天,领先的高性能生命科学解决方案提供商MolecularDevices,LLC.在英国卡迪夫正式开设了定制工厂。这座耗资数百万英镑的设施是为该公司专有的生物工艺工作流程和独特的生物反应器技术定制的,......
近日,德国哥廷根(GÖTTINGEN)——生命科学集团Sartorius正在扩大与NVIDIA的多学科合作,以帮助开发新的更好的疗法,将Sartorius对生命科学和生物处理的深入知识与NVIDIA的......
类器官研究的当前成就已经非常显著,并且在多个方面推动了生物医学科学的发展。以下是一些关键的成就:多种类器官的成功构建:科学家们已经能够从人类和动物的干细胞和组织源性细胞中构建出多种类型的类器官,包括肠......
在过去的十年中,类器官(Organoid)研究进入了一个黄金时代,这也标志着生物医学领域发生的关键转变。2023年可以称为类器官研究的一个里程碑,在这一年里发表了数千篇类器官研究论文,反映了类器官研究......
自2019年以来,科学家已经在国际空间站上培育出了包括人类的大脑、心脏和乳房在内的多个“类器官”模型。这些类器官通常利用人类干细胞培育而成,在一系列化学生长物质的帮助下,干细胞可发育成类似人体组织的三......