发布时间:2013-11-11 13:47 原文链接: 细菌耐药已成“全球威胁”

  青霉素对许多致病菌不起作用了;结核病常规特效药对相当数量的病人失效了;青蒿素在非洲也遇到了耐药……

  日前,中科院生物物理所等单位在《自然—基因组学》上发表了揭示结核分枝杆菌耐药性的文章;与此同时,中科院武汉病毒所在《艾滋病免疫综合征》上发表了关于HIV基因进化与传播耐药研究的重要进展;而中科院微生物所研究员朱宝利团队也发现了人体肠道中的细菌耐药基因。

  似乎一夜之间,细菌或病毒耐药问题研究呈现“千树万树梨花开”的局面。那么,什么是吹开万千科研之花的“春风”?

  超级细菌来袭

  “青霉素对许多致病菌不起作用了;结核病常规特效药对相当数量的病人失效了;青蒿素在非洲也遇到了耐药……从全球看,过去很多有效的治疗药物,正逐渐失效。”中科院生物物理所研究员毕利军说。

  “世卫组织总干事陈冯富珍曾预测,人类即将进入‘后抗生素时代’,甚至对许多普通感染性疾病都将无药可用,病原菌将再一次不能被杀灭。”中国疾控中心传染病预防控制所研究员万康林说,“如果人类不迅速采取措施,将面临耐药性危机。”

  一种细菌若携带多个耐药基因,就被称为“超级细菌”。万康林举例说,如NDM-1能够抵抗利福平、红霉素、链霉素、氯霉素等多种抗生素,还能对抗消毒剂和磺胺类药物,携带多种耐药基因,且有可能在不同细菌菌株之间穿梭传递,还可能在转移中发生重组,具有广泛的细菌宿主。如果其在致病菌中快速传播,将带来灾难。

  毕利军说,生命科学研究领域的科学家们,对超级细菌的致病机制十分感兴趣,因为大家都希望尽快找到能与耐药细菌或病毒对抗的新的特效药物。

  耐药性危机

  朱宝利认为,截至目前,媒体所报道的超级耐药菌感染还只是偶发事件。从超级细菌发现后的几年迹象来看,超级细菌在传播上有局限性。

  科学家发现,超级细菌与其他细菌类似,其耐药性由耐药基因决定,而这些耐药基因存在于细菌细胞内的一些“额外”的基因载体“质粒”上,而质粒是细菌细胞内额外的遗传物质,因此细菌如果在没有抗生素的环境中繁殖,会很容易将其丢失而失去耐药性。同时,超级细菌的质粒中携带多个耐药基因,载体很大,会给细菌的繁殖增加负担,在没有抗生素的环境中繁殖,其生长速度要比不耐药的细菌慢。因此,只要临床不滥用抗生素,耐药细菌会逐渐减少。

  事实上,目前超级细菌尚未广泛传播,没有想象中那么可怕。朱宝利认为,耐药菌的最大威胁仍来自医院内感染和呼吸道感染。

  检测的“短板”

  朱宝利告诉记者,呼吸道类感染后的主要治疗药物为青霉素类、阿奇霉素和红霉素等。在临床治疗过程中,由于缺乏快速简便的检测方法确认细菌耐何种药物,临床大夫常常只能给患者开最好的抗生素,以快速消除感染。实际上,这种用药方式有很明显的盲目性,但在缺乏快速检测方法的情况下,临床医生治病救人时别无选择。因此,只有提高检测速度,检测到细菌究竟耐什么药,给医生提供准确的信息,病人才能得到最好的治疗。

  然而,在我国,目前绝大多数感染性疾病的病人还难以开展药敏试验,生病后不可能有针对性地进行个性化治疗,感染后面临的耐药性难以避免。

  对此,毕利军认为,对于公众而言,遭遇细菌感染后,在治疗上首先不能单一用药,而应进行多种药物的联合使用,尽可能避免产生耐药。此外,应该全程按严格规范进行治疗。而尽早解决快速检测和诊断,研制对抗耐药菌的新药,则是科学家们正在为之奋斗的目标。

相关文章

全球研发投入不足,“超级细菌”仍在蔓延

据《自然》报道,未来25年,抗生素耐药性预计将导致全球3900万人死亡。但世界卫生组织(WHO)10月2日发布的两份报告显示,全球范围内寻找耐药性感染治疗方法的努力并未按计划推进。报告指出,全球抗生素......

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

研究揭示胰腺癌化疗耐药机制及临床治疗策略

近日,中国科学院分子细胞科学卓越创新中心高栋研究组、上海药物研究所周虎研究组、数学与系统科学研究院王勇研究组,联合上海长海医院金钢团队、上海交通大学陈洛南研究组,构建了目前规模最大、覆盖病理亚型最全面......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......

降本提效!我团队研制出系列牛用基因芯片

记者21日从国家乳业技术创新中心获悉,该中心技术研发团队成功研制出奶牛种用胚胎基因组遗传评估芯片和“高产、抗病、长生产期”功能强化基因组预测芯片。该系列基因芯片具有完全自主知识产权,填补了我国基因芯片......

新研究:阻断或抑制一种特殊基因可选择性杀伤癌细胞

国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......

我国科学家发现大豆种子油蛋比调控关键基因

记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......

茶叶大小谁定?这个基因很关键

茶树是以收获新梢为主的叶用经济作物,茶芽大小不仅直接影响鲜叶的产量和品质,还与茶类适制性密切相关。解析茶树芽大小的遗传调控机制,有助于改良茶树品种、提高茶叶产量。近日,中国农业科学院茶叶研究所种质资源......