无论这个纪录片是要干什么,但最起码的要求是事实和数据要真实正确。数据的误差固然不可避免,但是如果是故意的造假,那么就一定要问一下,为什么要故意造假?
恰恰在这个问题上,很多网友指出了这个纪录片中大量数据是通过故意的误读甚至直接篡改,诱导读者得出错误的结论。
无论是自然科学还是社会科学,一篇文章有一个数据故意造假,就已经完全失去了进一步讨论的意义。
更何况,这个纪录片出现大量数据故意造假,那就不是“水平低”或者“不专业”的问题了。
以下第1-10条转自知乎网友Jun,环境保护从业者。
本来没有打算写什么, 但是突然之间手机被刷屏,然后大家的情绪一下子都被调动了起来,我觉得,虽然我是理工科,还是要做点什么。
这段宣传片,柴静用了大量的数据和资料来支撑她的结论,我一般习惯看数据都是看paper,还不太习惯看文科生摆弄些她自己都不懂的东西,我必须承认她的勇气,但是同时我也有点气愤,因为错误造假的数据对大众的影响比煽情的鼓动来的更大。看着那一串串高大上的NASA, 技术统计局,国家监测局,大家都觉得这是多么"严谨的"调查研究啊! 本人正好博士论文与emission有点关系,看着看着觉得有点不对,查了查资料,发觉几乎每个数据都有问题。实在是有点忍不住了。
以下是纯技术讨论分割线,我都附上详细的引用资料,绝对比柴小姐专门唬人的大title来得详细,欢迎理性讨论。
【1】6:10 有意混淆雾霾和PM2.5
她问雾霾是什么?然后一下子转到PM2.5, smog不等于 PM2.5好吧,smog中有CO, Pb, NOx, PM, 还有SO2.怎么逻辑上一下子就套换了呢 (Smog and Particulates:Pollutant Descriptions)
【2-4】6:30 伪造采样结果
我注意到她的这款采样仪, 是LIbra Buck pump, 看样子是LP4的pump, 这个pump的工作时常是8小时左右,怎么可以采样24小时? 恩,她应该是背了好几个大电池吧,不过我没见着,而且额外的电池也不是标配 (http://www.buckservice.com/manuals/Libramanua%20L-4.pdf) LP5是可以工作20个小时的,不过她的型号不是LP5的。
你能告诉我你知道采样膜本身应该是什么颜色的吗??你知不知道是PVC和MCE材料的?大部分黑色的是吸附的碳吧,碳本身的毒性不大,哦,这是不是又和你研究结果的大部分是致癌物矛盾了?
让我来告诉你实验该怎么做吧, 采样仪的测试范围和灵敏度数据要有吧,空气的湿度和风向条件要有吧,采样仪的流量数据要有吧,什么都没有就敢上数据,数据就是垃圾。(说句老实话我根本不相信filter会黑成那样,24小时,污染再大,顶多是灰色,我实验室放了7年的filter都没有那么黑,弄得太黑亮了,真的。)
【5】8:40 对图片进行裁剪和后期加工
这个是柴小姐NASA的碳密度图,这个数据好像很神秘,其实他是这样的。
SVS: AtmosphericBlack Carbon Density (id 3668)
这个是官方图,怎么样?我截的是不是看上去没有那么恐怖? 因为这个图是8-11月的数据,所以她可以随意截出最槽糕的图片,甚至人为调亮度,既然都是网上资源,干吗不直接连网络而要截图片?因为图片是可以操作的。实际上,大部分发展中国家,东南亚,非洲,一些南美国家,都差不多。
【6】12:41 编造并不存在的因果关系
这个是最吐嘈的地方, 看到这个数据,我的早饭都喷出来了,来,先上图看看。
看清楚了吗??图的横坐标是年份,纵坐标是各种死亡率。你能告诉我和PM2.5有一毛钱关系吗吗? PM2.5的数据在哪里啊?你不要欺负我看不懂数据图啊,尤其这个“复杂”的数据图还有三个销魂的多项式,放在右边。我懒得截图了,不过我随便看了一下,如果X=0的话,Y应该是负的,而我随便代一个X的数据,Y是一个巨大的数字,根本不在图表显示之类。感兴趣的话可以自己做线性拟合。柴小姐太入戏了,我做学生的时候导师常教导我说,自己不是很明白的图表不要去误导人,看来不同人的职业操守是不一样的。
【7】改变数据口径形成误导印象
这个是全国的PM2.5来源,我看着不对,因为PM2.5来源复杂,这个图有点把问题太简单话了,我知道,简单的东西比较容易发挥,因为这时候的攻击对象是煤。
然后接下来,她又扔出来一张图,是北京PM2.5的来源,现在这个数据显示:31.1%来自机动车
同学门要问了,为啥这附图不把燃煤+燃油放在一起呢? 因为柴小姐要讨论汽油了啊!放一起不就显示不出汽油排放的害处了吗!所以数据的“处理”是可以根据需要来玩的。当然,北京的数据我是有的(R. Zhang et al.: Chemical characterization and sourceapportionment of PM2.5 in Beijing)这篇文章分析得很详尽,关于污染源也按照不同季节区分了,事实上,机动车的污染并没有那么严重。我就是不喜欢为了自己的论点来manipulate数据,很恶俗。
【8】24.06 篡改资料的背景和时间
全球化石能源燃烧强度表
首先,你可以告诉我这是全球吗, 吗??你不要欺负我没学过地理啊!南半球呢?这个图说真的我不是很懂,什么叫燃烧强度?怎么测啊? 不过我稍微转个弯想想,她们是想说二氧化碳的排放吧,因为大部分能源燃烧排放的是CO2, 于是我找到了下面这张图。
这个确实是NASA2014年公布的CO2 emission的资料(Both Beautiful and Disturbing, a New NASA Visualization Shows CarbonDioxide Emissions Swirling Around the World)不过这个图明明写的是亚洲和喜马拉雅地区。还有这个图是超级计算机模拟出来的,是个visualization,不是真实数据,虽然是NASA2014年放出来的,但是模拟的是2005-2007的情况,也是为了响应中美对于温室气体排放控制协议。柴小姐这样随便串改资料背景,为自己所用,还堂而皇之的拿出来show,我真是佩服。
【9】更恶劣的:直接伪造数据
接下来,柴小姐给大家普及了一个时髦的名词,叫蒸汽压。也就是Vaporpressure. 看着红外镜头下的汽油蒸发物是不是很酷的东西?好吧,不懂vapor pressure的人自己自行补课吧,我要说的是数据。
柴小姐数据常常是信口就来,我该佩服她博学多才呢还是记忆力好呢。这个1升等于多少克的概念是不是很熟悉?学过中学物理的都会算吧。
PV=nRT,n=PV/RT=(0.5X1)/(8.3X298) m=nM=0.02g
不是0.02g吗,怎么是1.5g?
注意: 我用的pressure是她表格里的50Kpa, T是室温,M是105.
http://www.methanol.org/energy/resources/alternative-fuel/alt-fuel-properties.aspx
接下来注意
越来越入戏了。
请看标准的汽车尾气排放数据,就算是高标准的美国,每加仑CO2的排放(还不是全部尾气哦)就是8.8kg per gallon, 1gallon是3。78升,也就是排放33g的二氧化碳。
你是要告诉我1.5g比33g 多吗???
https://www.chargepoint.com/files/420f05001.pdf
【10】直接在数据后面加两个零!!!
这个时候我已经不想继续看下去了。一般来说在学术界,你要一个数据错误,造假,manipulate.你的reputation就没了,因为你就是这个水平。柴小姐这个错误百出的PPT还是越发来劲,最后再补一个吧。凑个整数(其实到处嘈点还很多...)
这个加洲的数据,号称来自空气质量管理局。好,请看加州官网的数据。他是这么写的
1970, CA's populationreached 20 million people. Total registered vehicles exceeded 12 million andvMT was 110 billion. Cumulative CA vehicle emissions for NOx and HCs were 1.6million tons/year.
Key Events in theHistory or Air Quality in California
柴小姐右边是VMT ,也就是vehicle mileage traveled. (一年的里程数) 那么1970年是110billion,
1billion=1000million,110=110,000million. 请数下,是4个零。 再看柴的图表, 1970年对应的是1000000,我数了好几篇,就是6个零。白白的多了10倍!!
为嘛呀, 这个数据不用造假啊? 也不影响她的PPT的说教。我想了一下,觉得这个应该是水平问题。我想看看PM2.5的数据,结果我得出来的是
原来这个数据1999才有,至于她们怎么拿到1970-1999的,大家就自行脑补好了。
最后,我不评价她的观点,但是她敢拿假数据说话,还一定要把数据挂个官方的大牌子给自己做装饰,我看一次打一次。如今网络发达了,屁都不懂的人也可以google个事是而非的东西装点门面,大家在这方面还是要多看看专家的观点,毕竟他们受过严格的科学训练,有着严谨的操守,而专业煽情的人,也应该专注在煽情上。
随着人工智能(AI)、自动化等技术的持续突破,利用传感器进行数据采集与高速传输,并通过物联网存储海量数据,正持续推进智能化养殖业发展,逐渐成为推动猪育种向精准化、高效化、智能化转型的核心驱动力。从整个......
国家知识产权局办公室关于印发《知识产权数据使用手册及开放目录》的通知国知办函服字〔2025〕153号各省、自治区、直辖市和新疆生产建设兵团知识产权局,各地方有关中心:为促进知识产权数据开发利用,提高知......
2月23日,记者从海南医科大学获悉,该校热带医学院杨国静教授团队近日在国际医学期刊《英国医学杂志》在线发表论文《中国被忽视热带病负担估计的差异:真实世界数据与GBD2021的比较研究(2004—202......
人工智能(AI)初创公司xAI创始人埃隆·马斯克近日表示:“在AI训练中,我们现在基本上耗尽了人类知识的累积总和。”之前研究也表明,人类生成的真实数据将在2到8年内消耗殆尽。鉴于真实数据日益稀缺,为满......
12月28日,由人民数据开发的“数融平台”正式上线试运营。平台整体依托区块链、人工智能和企业经营相关数据要素,实现链上信息全透明、全上链,实现数据资产情况全穿透,实时追踪一手风控数据,对潜......
随着新一轮科技革命和产业变革深入发展,数据作为关键生产要素的价值日益凸显。五部门:制定数据产业发展促进政策近日,国家数据局联合中央网信办、工业和信息化部、公安部、国务院国资委印发了《关于促进企业数据资......
2024年12月3日,自然科学基金委管理科学部、信息科学部在北京召开专项项目“数据市场制度设计与关键技术”评审会议。自然科学基金委党组成员、副主任江松院士出席会议并讲话。国家数据局政策与规划司副司长栾......
2024年度国家自然科学基金指南引导类原创探索计划项目“数据流通市场的基础理论与治理方法”项目指南以数据要素为核心引擎推动数字经济深化发展,有利于构建新发展格局、建设现代化经济体系、构筑国家竞争新优势......
10月21日下午和10月22日上午,国家计量科学数据中心在恩施市接续2024年度工作会召开了“计量与数字化”学术会议。本次会议共安排了13场精彩的学术报告,展出了系列学术墙报,并为学术墙报获奖者颁奖。......
金秋十月,丹桂飘香。2024年10月21日,国家计量科学数据中心2024年度工作会暨“计量与数字化”学术会议在湖北省恩施州顺利召开。本届大会由中国计量科学研究院主办,湖北省计量测试技术研究院和恩施州计......