发布时间:2013-09-10 14:18 原文链接: 美国大脑研究计划忽略神经胶质引发争议

  近日,Nature刊登了NIH神经系统发育和可塑性部主任R. Douglas Fields的评论文章Neuroscience: Map the other brain。该文章重点指出,美国的大脑图谱计划可能过分强调神经元的描述,忽视大脑内胶质细胞重要作用,这或许导致该计划最终难以产生预期的效益。

  大脑研究计划是美国总统奥巴马在今年4月宣布启动的,其目的是进行人类和实验动物大脑精细图谱和神经连接功能的分析。但是自该计划被提出后,许多学者提出了自己的疑虑,因为绘制脑图要比人类基因组计划的复杂程度高得多,而且该计划所具有实用性也不够确定。

  Douglas认为探索神经网络并开发相应的研究技术具有重要的意义,应当大力支持。但简单对神经连接并不能从实质上解决该计划承诺解决的问题,例如理解感知、意识、记忆的机理,以及开发出治疗癫痫、抑郁症和精神分裂症的方法。

  可能导致该计划失败的一个巨大的绊脚石就是研究计划设定时没有考虑到除1000亿神经细胞外的更多不直接参与电活动的神经胶质。这些神经胶质分布在神经连接体周围,一般记录神经细胞电活动的手段很难对这些细胞活动进行有效记录。这类细胞自从19世纪中叶被视为结缔组织而发现后,在人类尝试理解神经信号传递的过程中,它们的功能一直被忽视。

  许多研究发现胶质细胞可以感受到神经电活动并对神经电活动产生影响,并参与调节学习记忆等各种重要的神经系统功能。在脑损伤和疾病中,胶质细胞甚至起到核心作用,例如精神分裂症和老年性痴呆,而在过去,传统认为这些疾病源于神经细胞的功能衰退。而“胶质细胞(Glia)”这个词在奥巴马的脑研究计划公告中根本没有出现,在2012年和2013年重要期刊上发表的白皮书中也没有踪影。这意味着神经科学家需要拓展研究思路,加深对研究举措的思考。

  神经胶质的巨大作用

  大脑内主要含有三种类型的胶质细胞,包括少突胶质细胞、小胶质细胞和星形胶质细胞。这些细胞的作用是通过化学递质、缝隙连接、离子通道与神经细胞进行离子和小分子的相互传递。

  少突胶质细胞构成包围在神经轴突周围的神经髓鞘,髓鞘的绝缘作用可以极大地加快神经电活动传递速度,是神经正常发挥其功能的重要保障。

  早在几十年前,生物学家们就已经认识了小胶质细胞。它是大脑的免疫细胞,对大脑的感染创伤产生反应,可清除因疾病导致的受伤组织,也可释放一些可促进神经修复的物质。但是,去年的一项动物实验研究发现,小胶质细胞对正常视觉神经突触的发育和功能重建也发挥着重要的作用,但取决于动物出生不久时的视觉经历。

  此外,多项研究已表明,星形胶质细胞通过影响细胞外钾离子浓度调节神经电活动传递,也可以对局部血流量、神经递质和神经调质、营养物质传递和细胞间的体积产生调节作用。这些功能都可以影响神经系统的通讯和可塑性。

  在今年2月在弗吉尼亚州阿灵顿举行的关于胶质细胞生物学研讨会上,神经元可塑性和计算神经科学领域的专家聚集在一起,经过讨论,大部分学者一致认为和神经电活动的快速反应不同,胶质细胞由于其复杂的分支结构及化学信号(相对于电信号)的变化相对缓慢,而这种相对缓慢的变化可能恰恰是许多重要神经系统功能如学习记忆等所必须的,而这一过程通常需要几小时、几天甚至几周,而不是几毫秒或几秒。

  一些开创性的研究甚至能够瞥见胶质细胞可塑性和信息处理机制。举例来说,已有研究小组在致力于体外环境条件下,轴突的脉冲流量通过神经胶质控制其髓鞘形成的相关研究。因为髓鞘能够决定电气信号通过轴突时的速度,因此这就决定了在同一时间一个神经元可以输入的信息量,这一过程就是学习和神经元可塑性的基础。当人们在电脑游戏中学习到新的技能时,他们的大脑会发生相应的变化。

  科学家表示他们才刚刚开始了解星形胶质细胞的多样性、连通性和功能性。一些研究表明,星形胶质细胞具有加强大脑信息处理高阶组织的解剖和生理特性。在灰质的大脑皮质和海马,星形胶质的组织没有重叠。这样的组织形式的生理学意义目前仍然是未知的,但一个人的星形胶质可以涵盖并影响两万个突触。其实,人的星形胶质细胞明显不同于其他动物。在一系列的测试中,用人类星形胶质细胞取代老鼠的星形胶质细胞,老鼠具有了更强的学习能力。

  神经科学家们已经知道神经胶质会导致某些疾病。大脑内几乎所有的癌变都起源于神经胶质;多发性硬化的关键问题就是少突胶质细胞受损;HIV相关的神经系统疾病中,爱滋病病毒可感染星形胶质细胞和小胶质细胞,而不感染神经细胞;许多神经性疾病,现在也涉及神经胶质细胞,如自闭症、运动神经元侧索硬化症、早老性痴呆、慢性疼都和胶质细胞关系十分密切;另外这同样适用于其它各种发育和精神疾病如精神分裂症、抑郁症和强迫症。

  神经胶质不可忽略

  测绘和监测整个人类大脑皮层所需要的资金支持可以与人类基因组计划相媲美:38亿美元。如果公众不能理解这项研究的好处或者成本不现实,他们是不会支持这样一个需要重大资金支出的科研项目。通过1993年美国国会取消了数十亿美元的建立超导对撞机项目就可以看得出来。

  很少有人认为我们有必要了解人类大脑。大脑是人体最大的不解之谜,智障、脑肿瘤、脊髓损伤、老年痴呆症和精神疾病几乎存在于每个人的周围。但目前看来,大脑研究计划有失败的风险——无论是科学还是公众支持方面。

  今年6月在纽约举行的世界科学节,一位与会者坚持认为,神经胶质的相关信息将是神经元映射和跟踪记录神经元连接技术开发的副产品。利用新的方法如电压敏感染料或纳米颗粒来监测神经元的电信号,对于了解不使用电脉冲的神经元不会有多大的用处。正是这种观点使得人们一直以来对于神经胶质都不甚了解。

  此外,研究项目将神经胶质细胞排除在外更凸显了一个常规性的问题:多次测量足够数量的神经元才能揭开神经元产生的“意外”的神秘面纱并治愈疾病,而不是简单地“每次测量一个神经元”。更好的理解和新的治疗方法需要正确假说的导向。

  在脑映射过程中,第一要务是调查未知的领域。我们所了解的只是大脑奥秘的一半,大脑研究计划很可能扩展到这一陌生领域。“大脑”探索必须与神经胶质一起研究,而不能把神经胶质研究当做是一种副产品。

相关文章

特定神经元有助大脑微调血糖水平

在禁食或低血糖等压力情况下,脑部能调控葡萄糖释放,但这种调控作用在日常生活中却鲜少被关注。据最新一期《分子代谢》杂志报道,美国密歇根大学的一项新研究表明,下丘脑的一类特定神经元能帮助大脑在日常情况下维......

研究揭示人类海马新生未成熟神经元的独特演化规律

8月11日,《自然-神经科学》(NatureNeuroscience)在线发表了题为Cross-speciesanalysisofadulthippocampalneurogenesisreveals......

大脑统一“剧本”,助力理解大脑决策奥秘

你有没有想过,为什么两个司机看到同样的拥堵路况,一个猛踩油门冲进去,另一个却小心翼翼地刹车避让?其实在他们做出动作之前,大脑早已悄悄作了一个决定。而这个决定,并不是突然冒出来的,它就像一场精密排演的舞......

Nature:神经元能刺激胃癌,促进癌细胞生长和扩散

研究人员发现,胃癌与附近的感觉神经建立电连接,并利用这些恶性回路刺激癌症的生长和扩散。这是第一次发现神经和大脑外的癌症之间存在电接触,这增加了许多其他癌症通过建立类似联系而发展的可能性。这项研究公布在......

攻击还是友善?大脑关键神经元说了算

中国科学院生物物理研究所李龙研究组与美国西奈山伊坎医学院ScottRusso课题组合作,发现杏仁核皮质区雌激素受体α神经元在调控攻击行为和亲社会行为的转变中扮演了重要角色。日前,相关研究成果发表于《自......

《细胞》:科学家发现调控饱腹感的新神经元,可以追踪每一口食物!

减肥的时候是真想求自己别吃了,但是,往往意志打不赢食欲,还是想吃。正经来说,调控进食行为还得是饱腹感相关神经元。近日,来自哥伦比亚大学的研究团队发现了脑干中缝背核(DRN)中的一组可以调节饱腹感的肽能......

大脑中或存在“饱腹指挥官”

为什么人们吃饭时会突然觉得饱了?最近,美国哥伦比亚大学团队在小鼠的大脑中找到了答案:一种特殊的神经元担任“饱腹指挥官”,负责发出“停止进食”的指令。这项研究发表在最新一期《细胞》杂志上。新发现的神经元......

有争议的研究重新绘制神经元经典图像

翻开任何一本神经科学教科书,对神经元的描述都大致相同——一个像变形虫一样的斑点状细胞体延伸出一条又长又粗的链。这条链就是轴突,它将电信号传递到细胞与其他神经元通信的终端。轴突一直被描绘成光滑的圆柱体,......

无需活体大脑检测结合AI可预测神经元活动

据最新一期《自然》杂志报道,借助由脑组织创建的神经元及其连接图——“连接组”,再结合人工智能(AI),美国与德国科学家达成了此前从未实现的突破:无需对活体大脑进行任何检测,便能预测单个神经元的活动。数......

AI结合“连接组”可预测神经元活动

科技日报讯 (记者张梦然)据最新一期《自然》杂志报道,借助由脑组织创建的神经元及其连接图——“连接组”,再结合人工智能(AI),美国与德国科学家达成了此前从未实现的突破:无需对活体大脑进行任......