网易探索8月26日报道 据物理学家组织网8月22日报道,最近,美国南加州大学一个研究小组利用从水母体内分离出的生物荧光蛋白,照亮了神经元内部并拍摄了一段视频,揭示了蛋白质在神经细胞区室内运动的情景,可“看到”蛋白质定向地通过神经元以及大脑重建的过程。相关论文最近发表在《细胞・报告》杂志上。
神经元内部区室分两种:轴突部分和树突部分。轴突是负责把电信号传给其他神经元的区域,而树突是从其他神经元接受信号的区域。论文领导作者、南加州大学博士生萨曼德・阿尔巴萨姆说:“十几年前人们就知道,蛋白质具有专门的定向性,只能进入其中一种区室。但不知道这种定向是怎么发生的,直到我们亲眼目睹了它们是怎么向其中一种区室移动的。”
上世纪九十年代中期,科学家从水母体内分离出绿色荧光蛋白(GFP)。GFP受到蓝光照射时,会发出亮绿色的荧光。用GFP做标记让人们能看到细胞和神经元内部的蛋白质。但因为神经元内有许多不同的、互相重叠连接的路径,至今还无法看到蛋白质在神经元内部的流动。
阿尔巴萨姆和同事开发出一种新技术,让人们进一步看清了蛋白质是怎样定向进入到两种区室之一的。他们通过阻塞单条路径,使浸满了GFP的运输泡产生堆积。运输泡是一种携带膜蛋白的小泡泡,能在神经细胞内上下移动。然后用一种小分子药物,使这些堆积的发光运输泡在一次强光脉冲下突然释放。论文通讯作者、南加州大学栋赛夫文理学院分子与计算生物学副教授多恩・阿诺德解释说:“结果令人非常吃惊。我们发现那些携带膜蛋白质的运输泡,应该进入树突的并不是一开始就瞄准了树突区室,而是两种区室都有进入。但那些进入轴突区室的很快就停下来,被阻止进一步深入。”
蛋白质是构成大脑的基本建筑材料。“人脑每天都在不断地分解、重建。从今天开始一周之后,构成大脑的蛋白质就会变得和今天完全不同。”阿诺德说,“这段视频显示了大脑的重建过程,以前我们只是知道这一过程,现在真实看到了这一情景。”
8月11日,《自然-神经科学》(NatureNeuroscience)在线发表了题为Cross-speciesanalysisofadulthippocampalneurogenesisreveals......
2025年8月9日,备受瞩目的2025年全国糖生物学会议暨第六届全国糖化学会议在四川成都正式开幕。本届盛会由中国生物化学与分子生物学会糖复合物专业分会、中国化学会糖化学专业委员会、安特百科(北京)技术......
德国莱布尼茨老龄研究所团队在一种名为鳉鱼的淡水鱼大脑中发现,随着年龄增长,细胞内合成蛋白质的“工厂”——核糖体,在制造某一类关键蛋白质时出现卡顿,从而引发一连串恶性循环,导致细胞功能不断衰退。这或许是......
近日,湖南大学生物学院生物与化学质谱实验室岳磊教授团队在蛋白质质谱成像(MSI)领域取得重要突破。团队创新性地提出了组织蛋白质成像新策略:HydroWash。该方法创新性地将组织洗涤与明胶水凝胶调控相......
你有没有想过,为什么两个司机看到同样的拥堵路况,一个猛踩油门冲进去,另一个却小心翼翼地刹车避让?其实在他们做出动作之前,大脑早已悄悄作了一个决定。而这个决定,并不是突然冒出来的,它就像一场精密排演的舞......
将高度互补的蛋白质组学技术专长与因美纳行业领先的产品创新和全球市场影响力相结合为因美纳在广阔且持续增长的市场中实现增长奠定基础自2021年末以来,因美纳与SomaLogic即在蛋白质组学联合开发方面开......
6月19日消息,国际顶级期刊《NatureMachineIntelligence》发表了阿里云AIforScience的研究成果LucaOne。这是业界首个联合DNA、RNA、蛋白质的生物大模型。该大......
近日,华南农业大学教授王应祥团队在国家自然科学基金等项目的资助下,研究揭示了模式植物拟南芥泛素连接酶后期促进复合物/细胞周期体(APC/C)调控减数分裂染色体正确分离的分子机制。该研究丰富了蛋白质泛素......
华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心教授郭志前团队,创制了激活型化学遗传学荧光探针,首次在活细胞中监测蛋白质成簇/解聚的精确状态。相关研究近日作为VIP(VeryImpor......
日本名古屋大学研究团队在最新一期《自然·生物技术》杂志上发表了一项名为“内部帽启动翻译”(ICIT)机制的创新研究。该机制下的仿佛戴着帽子的mRNA可产生200倍以上的蛋白质,为治疗癌症和蛋白质合成异......