发布时间:2023-03-01 15:44 原文链接: 胡文辉团队开发稳定mRNA并促进其表达的新技术

  随着生物医药领域的发展,以mRNA和蛋白质为基础的药物,例如mRNA疫苗和抗体,已经大规模进入临床应用,并在COVID-19大流行期间大放异彩。然而,相比于传统药物,这类新型大分子药物制造起来既费时又昂贵,且产量往往不高。因此,如何低成本生产足够数量的mRNA和蛋白质,成为了限制其发展的一大挑战。

  近日,美国天普大学胡文辉研究人员在 Molecular Therapy 期刊发表了题为:Protein expression/secretion boost by a novel unique 21-mer cis-regulatory motif (Exin21) via mRNA stabilization 的研究论文。

  该研究发现了一种神奇的短核苷酸序列——Exin21,它能够增强mRNA的稳定性,从而将其在细胞中的蛋白质产量提高数百倍。这将带来一种通用的蛋白质生产助推器,用于以mRNA和蛋白质为基础的生物制品、药物和疫苗的开发。

  蛋白质在所有生理过程和病理条件中都起着关键作用。在过去的三十年里,医药领域对生物制品的需求一直在稳步增长。然而,在许多情况下,mRNA和蛋白质的大规模生产一直因成本高昂而十分具有挑战性。

  长期以来,科学家们一直想方设法找到一种可以提高蛋白质产量的普适性方法,例如优化启动子序列,引入增强子元件,密码子优化以及添加Kozak序列、核糖体进入位点(IRES)等等。然而,即使采用了这些策略,一些蛋白质仍然保持低表达水平甚至完全不表达。

  因此,开发新的、简单的、通用的、能以较低成本显著提高蛋白质产量的方法,特别是在需要大规模生产蛋白质的情况下,仍然是当前的一个研究重点。

  在这项最新研究中,新的突破集中在Exin21上,这是一个由21个核苷酸组成的短序列,编码一种被称为Qα的短肽。Exin21具有一种神奇的魔力,当它被被添加到目标基因的编码区时,可以极大地增加目标蛋白质的产量。

  Exin21/Qα可以显著促进HEK293T细胞中双报告基因融合病毒蛋白的产生

  研究团队将Exin21插入到SARS-CoV-2的包膜蛋白(E蛋白)编码序列和荧光素酶报告基因之间,并显著促进了E蛋白的表达,平均增强了34倍。Exin21中的同义和非同义突变都降低了其增强能力,表明这21个核苷酸具有独特的组成和顺序。

  进一步研究表明,除了E蛋白,添加Exin21也可以促进多种SARS-CoV-2结构蛋白(S、M、N蛋白)和辅助蛋白(NSP2、NSP16、ORF3)以及宿主蛋白(IL-2、IFN-γ、ACE2、NIBP)的产量。

Exin21/Qα具有广泛的蛋白表达增强效果

  此外,Exin21/Qα还可以提高假病毒和标准慢病毒的包装效率,在人抗SARS单克隆抗体的重链和轻链上添加Exin21/Qα可显著增加抗体的产生。这种增强的程度因蛋白质类型、细胞密度和状态、转染效率、分泌信号和2A介导的自切割效率而异。

  Exin21/Qα的加入提高了人抗SARS单克隆抗体的产量

  那么,Exin21/Qα增强蛋白表达的具体机制是什么呢?研究团队发现,Exin21/Qα可以增加mRNA的合成,以及增强其稳定性,从而促进蛋白表达和分泌。这些结果表明,Exin21/Qα有潜力作为一种通用的蛋白质生产助推器,这对生物医学研究和生物制品、药物和疫苗的开发具有重要意义。

  Exin21的加入促进了mRNA的合成,并增加了mRNA的稳定性

  论文通讯作者胡文辉教授表示,这一发现无疑非常令人兴奋,这有可能增加蛋白质的生产,从而在许多领域得到广泛应用。这对于生产治疗性蛋白质,例如抗体和mRNA疫苗,应该非常有用。

  目前,研究团队正在进一步优化Exin21和类似基序的使用,以增强不同类型的抗体和mRNA疫苗。尽管全面的潜在机制尚待阐明,但类似的编码基序,如Exin24或Exin27,可能会在未来被发现。

相关文章

2024年,西湖大学施一公团队合作再取进展

U2小核核糖核蛋白(snRNP)对pre-mRNA分支位点(BS)的选择对于剪接前体(Acomplex)的组装至关重要。RNA解旋酶PRP5校对BS选择,但其潜在机制尚不清楚。2024年1月9日,西湖......

颠覆mRNA递送技术:国内团队开发非阳离子LNP系统,可靶向脾脏并诱发强大免疫反应

近年来,mRNA技术作为一种全新的药物形式,在疫苗生产、基因治疗和肿瘤治疗中引领变革且大放异彩。2023年诺贝尔生理学或医学奖更是授予了mRNA技术先驱KatalinKarikó和DrewWeissm......

Nature:核糖体对合成mRNA的错误读取竟可在体内引起意料之外的免疫反应

信使核糖核酸(mRNA)是告诉体内细胞如何制造特定蛋白的遗传物质。在一项新的研究中,来自英国剑桥大学等研究机构的研究人员发现,细胞的解码机器对治疗用mRNA的错误读取会在体内引起意外的免疫反应。他信使......

科学家揭示SAP30BP对CDK11调控剪接功能的关键激活作用

近日,中国科学院分子细胞科学卓越创新中心研究员程红团队与武汉大学教授周宇团队、中国科学院大连化学物理研究所研究员叶明亮团队合作以CDK11requiresacriticalactivatorSAP30......

BioNTech扩展非洲制药基地,为疫苗生产开辟新里程碑

扩大非洲生产mRNA疫苗的能力已经迈出了重要一步,BioNTech在卢旺达基加利设立了一家设施。该设施专门用于制造供非洲联盟使用的疫苗。BioNTech可以每年生产多达5000万剂产品,其RNA工艺类......

5000字长文,疫苗行业深度解析:全球寡头技术创新与竞争激烈的市场

第一部分:疫苗行业概述疫苗行业的全球格局疫苗作为控制传染病最有效的手段,其重要性在新冠疫情中得到了前所未有的突显。全球疫苗市场呈现出高度集中的特点,主要由几家大型跨国公司控制。这些公司在疫苗研发、生产......

Nature|mRNA疫苗中的m1Ψ修饰会导致核糖体移码……

体外转录(IVT)mRNAs是可以对抗人类疾病的方式,例如它们被用作SARS-CoV-2的疫苗。IVTmRNAs被转染到靶细胞中,在靶细胞中被翻译成重组蛋白,编码蛋白的生物活性或免疫原性发挥预期的治疗......

微纳米机器人,揭秘微观世界!

对人类而言,微观世界仍然存在很多谜题——无论是地球上生命力最顽强的微型生物水熊虫,还是被誉为“微生物工厂”的微米级大肠杆菌,甚至是可寄生在大肠杆菌中的纳米级噬菌体,以及蕴含着神秘生命起源的分子基因编码......

开发下一代RNA药物,新科诺奖得主魏斯曼创立新公司,已完成2.7亿美元A轮融资

2023年10月2日,诺贝尔奖生理学或医学奖授予了mRNA技术的两位奠基人——KatalinKarikó、DrewWeissman。以表彰他们发现了核苷碱基修饰,从而开发出了有效的mRNA疫苗来对抗C......

Nature系列综述:mRNA纳米医学新时代

自20世纪90年代初以来,遗传学(Genetics)和纳米医学(Nanomedicine)的交叉已经在临床中找到了一席之地,并成为了过去十年来的游戏规则改变者之一,通过快速开发急需的治疗平台,在对抗从......