发布时间:2019-11-13 12:31 原文链接: 自然染色质免疫沉淀实验设计

1. The preparation of native chromatin from cultured human cells

1.1.Cultured cells (e.g. HL-60 or lymphoblastoids) are grown to a density of approximately 1 x 106 cells/ml until they are inlog phase.

1.2.Harvest cells: centrifuge samples (7,000 g, 10 min, 4°C) and wash the cell pellet 3 x ice cold PBS (Phosphate BufferedSaline).

It is essential that 5 mM Na butyrate is present in all solutions throughout chromatin isolationwhen using antibodies to acetylated histones to prevent deacetylation.

1.3.Resuspend cell pellet in TBS (Tris buffered saline) at 2 x 107 cells/ml and add an equal volume of 1.0% v/v Tween 40 inTBS. Add PMSF to a final concentration of 0.5 mM. Leave stirring gently on ice for 1hr (Transfer the suspension into a50ml tube with a small magnetic bar or flea; place the tube in ice on top of a magnetic stirrer).

1.4.Transfer cell lysate to an all-glass homogeniser and homogenise 7 ml aliquots with seven strokes using an ‘A’ or ‘tight’

pestle. Check that nuclei have been released by phase-contrast microscopy; intact cells should have the central darkregion of the nucleus surrounded by a halo, which is the less dense cytoplasm.

You may have to increase or decrease this homogenisation step to maximise the yield of nucleidepending on cell line.

1.5.Centrifuge samples (10,000 g, 20 min, 4°C).

1.6.Resuspend nuclei pellet in 25% [w/v] sucrose/TBS at 4x106 nuclei / ml and underlay with 0.5 vol of 50% [w/v] sucrose /TBS; centrifuge the samples (14,000 g, 25 min, 4°C).

1.7.Discard supernatant and wash nuclei pellet in 5 ml 25% [w/v] sucrose/TBS; centrifuge samples (14,000 x g, 25 min,4°C).

1.8.Resuspend nuclei pellet in 5ml digestion buffer and check absorbance ratios at 260 nm and 280 nm for a dilutedsample of the nuclei suspension; calculate the approximate DNA concentration from the A260 reading (the ratio ofA260/A280 should be about 1.1). Centrifuge samples (10,000 rpm, 10 min, 4°C) and resuspend the nuclei pellet at0.5mg/ml in 1.7 ml Eppendorf tube(s)

2. Micrococcal nuclease digestion

Normally we add 50 U micrococcal nuclease per 0.5 mg DNA, in a reaction volume of 1.0 ml. This is usually provided as apowder; dissolve the micrococcal nuclease in dH20 to the required concentration and store as small aliquots at -20°C.

Aliquots may be re-frozen and re-used once. This step needs to be carefully controlled, especially in the initial preparations.

High concentrations of micrococcal nuclease may over-digest the chromatin, leading tosub-nucleosomal particles. You should aim to obtain a long/medium oligonucleosome ladder.

If pure mononucleosome preparations are required carry out a linear sucrose gradient (5-20%),this will increase resolution.

2.1. Perform microccal nuclease digestions at 37°C for 5 min.

2.2. Stop reaction by addition of 0.2 M EDTA to a final concentration of 5 mM.

2.3. Place all samples on ice for 5 min; centrifuge samples (8,000 g, 5 min).

2.4. Remove and keep the first S/N (this is called the S1 fraction; total vol 1.0 ml); store overnight at 4°C.

2.5. Resuspend the pellet in 1.0 ml Lysis buffer and dialyse overnight against 2 litres of the same buffer.

2.6. After overnight dialysis centrifuge samples (500 g, 10 min, 4°C).

2.7. Remove and keep the supernatant (called the S2 fraction; total vol about 1.2 ml after dialysis); store at 4°C.

2.8. Resuspend insoluble pelleted material in 200 ul lysis buffer (called the P fraction).

3. Analysis of soluble chromatin fractions

3.1. Check A260/A280 in all samples; the ratios for S1, S2 and P fractions are approximately 1.7, 1.5 and 1.3 respectively.

3.2. Analyze all samples by 1.2% agarose gel electrophoresis.

Do not place ethidium bromide in the agarose gel or the electrophoresis buffer, because of thepresence of SDS (see below).

3.3. Preparation of samples: xul (total of 5ug) chromatin fraction (S1, S2 and P) yul dH2O (x+y = 25ul) 3ul 1% [w/v] SDS(final conc 0.1%) 2 ul gel loading buffer, containing bromophenol blue3.4. Stain the gel with 0.5ug/ml ethidium bromide after the run has finished.

4. Immunoprecipitation

4.1.100-200ug unfixed chromatin + 100-200ul affinity purified antibody (50-100ug Ig) and the final volume made up to 1.0ml with incubation buffer. A negative control, with no added antibody, also needs to be set up to test for any nonspecificbinding of the chromatin to the protein A Sepharose.

4.2.Incubate overnight at 4°C on a slow rotating turntable. Add 200ul 50% v/v protein A Sepharose; use a siliconizedpipette with the tip cut off to make this step easier. Incubate for 3 hr at room temperature on a fast rotating turntable.

(Make sure that the Sepharose is in a suspension at all times).

4.3.Centrifuge samples (3,000 g, 10 min, 4°C), remove and keep the S/N; this is the unbound (or “U”) fraction.

4.4.Resuspend the Sepharose pellet in 1ml buffer A and layer onto 9ml of the same buffer using a siliconised pasteurpipette and siliconized 15 ml tube.

4.5.Centrifuge samples (10,000 g, 10 min, 4°C), discard the S/N and wash the Sepharose sequentially in 10 ml buffer Band buffer C.

4.6.Finally, resuspend the Sepharose in 1 ml buffer C and transfer back to siliconized Eppendorfs.

4.7.Centrifuge samples (3,000 g, 10 min, 4°C) and resuspend the sepharose pellet in 250ul 1.0% SDS / incubation bufferand incubate for 15 min at RT on a fast turntable. (Ensure that the Sepharose is thoroughly resuspended at all times).

4.8.Centrifuge the samples (3,000 g, 10 min, 4°C) and remove and keep S/N; this is the bound (or “B”) fraction.

4.9.Wash the sepharose in 250ul 1.0% SDS / incubation buffer and centrifuge immediately (3,000 g, 10 min, 4°C).

Remove the S/N and pool with the previous bound fraction from the previous step.

5. DNA Isolation

Add 500ul incubation buffer to each bound fraction, to reduce the SDS concentration to 0.5% SDS.

Unbound and bound fractions then treated as follows:

5.1.Add 0.33 vol (330ul) phenol/chloroform; vortex and spin (13,000 rpm, 10 min, microcentrifuge). Keep the organicphase and interface; this is used to isolate immunoprecipitated proteins (see below).

5.2.Transfer the aqueous supernatant to an equal volume (1.0 ml) of phenol/chloroform; vortex and spin (13,000 rpm, 10min, microcentrifuge)5.3.Transfer supernatant to an equal volume (1.0 ml) of chloroform; vortex and spin (13,000 rpm, 10 min, microcentrifuge)5.4.Transfer S/N to a clean centrifuge tube and add 0.1 vol (100ul) 4 M LiCl, 50ug glycogen (Molecular biology grade,dissolved in dH20 at 2 mg/ml) as a carrier and 4 vol of ethanol. Vortex thoroughly and leave at -20°C overnight.

5.5.Centrifuge samples (13,000 g, 15 min) to precipitate the DNA.

5.6.Wash the pellet with 70% ethanol and redissolve the DNA in 250ul TE buffer.

5.7.Store samples at -20°C or proceed with detection method (PCR, microarray, etc).

5.8.PCR is used to quantify DNA levels of specific loci. This is analyzed semi-quantitatively (analyses of PCR end-productby agarose gel) using primers which can be designed using the URL below.

http://biotools.umassmed.edu/bioapps/primer3_www.cgiAlternatively, DNA levels are quantitatively measured by real-time PCR. Primers and probes are often designed usingsoftware provided with the real-time PCR apparatus.

6. Protein Isolation

6.1.To the first phenol/chloroform phase (see DNA isolation; step1) add 5ul of a 1 mg/ml solution of BSA (to be used as acarrier), 0.01 vol (4ul) 10 M H2SO4 and 12 vol of acetone.

6.2.After precipitation at -20°C wash the protein pellets once in acidified acetone (1:6 100 mM H2SO4:acetone) and 3 timesin dry acetone. Proteins can be analyzed by SDS-PAGE.

Solutions

10 x TBS

0.1 M Tris-HCl (pH 7.5)

1.5 M NaCl

30 mM CaCl2

20 mM MgCl2

50 mM Na butyrate (pH 8.0)

Digestion buffer

0.32 M sucrose

50 mM Tris-HCl (pH 7.5)

4 mM MgCl2

1 mM CaCl2

0.1 mM PMSF

5 mM Na butyrate

Lysis buffer

1.0 mM Tris-HCl (pH7.4)

0.2 mM Na2EDTA

0.2 mM PMSF

5 mM Na butyrate

Incubation buffer

50 mM NaCl

20 mM Tris-HCL (pH 7.5)

20 mM Na butyrate

5 mM Na2EDTA

0.1 mM PMSF

Buffer A

50 mM Tris-HCl, (pH 7.5)

10 mM EDTA

5 mM Na butyrate

50 mM NaCl

Buffer B

50 mM Tris-HCL (pH 7.5)

10 mM EDTA

5 mM Na butyrate

100 mM NaCl

Buffer C

50 mM Tris-HCL (pH 7.5)

10 mM EDTA

5 mM Na butyrate

150 mM NaCl

Protein A Sepharose

Pre-swell protein A Sepharose overnight in buffer A at 4°C. Centrifuge (10,000 x g, 10 min) and resuspendpellet in approximately an equal volume (50% v/v) of buffer A.

(Adapted from protocols used by Laura O'Neill and Prof. Bryan Turner. University of Birmingham)

相关文章

我国学者发现染色质“记忆传承”关键机制

记者近日获悉,中国专家团队首次揭示了一种在哺乳动物细胞中控制染色质分区以及近着丝粒异染色质形成、维持和稳态遗传的新机制。北京时间15日深夜,由华东师范大学翁杰敏教授团队与中国科学院生物化学与细胞生物学......

科学家揭开染色质“记忆传承”关键机制

华东师范大学教授翁杰敏团队与中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员陈德桂团队合作,揭示了哺乳动物细胞近着丝粒异染色质形成、维持和稳定遗传的新机制,对异染色质调控机制有了......

国家免疫规划专家咨询委员会委员调整

各省、自治区、直辖市及新疆生产建设兵团疾控局、卫生健康委,中国疾控中心(中国预科院),各有关单位:为落实《国务院办公厅关于进一步加强疫苗流通和预防接种管理工作的意见》(国办发〔2017〕5号)规定要求......

研究构建核小体结合蛋白在线数据库并揭示染色质调控新机制

染色质是真核细胞中DNA包装和基因表达调控的核心结构。核小体作为染色质的基本单位,与各种蛋白质的相互作用决定了基因表达的精确调控。理解核小体结合蛋白的结构特征和相互作用机制,对揭示表观遗传调控、疾病发......

研究发现病毒蛋白抑制水稻免疫途径新机制

水稻作为最重要的粮食作物,为超过半数的世界人口提供主食。然而,水稻黑条矮缩病毒(SRBSDV)等病毒严重危害水稻生长,威胁粮食生产安全,解析病毒—水稻互作的分子机制对水稻病毒病的防控具有重要意义。近日......

工程师把牙线做成了无针疫苗

使用牙线可能不止能让你少听点牙医的唠叨,未来它或许还可以保护你免于感染流感。一项7月22日发表于《自然-生物医学工程》的研究报告了一种非传统的无针疫苗。研究人员开发了一种特殊的牙线,可以将蛋白质和灭活......

西湖大学团队发现肿瘤免疫逃逸新机制

记者7月1日从西湖大学获悉,该校医学院周挺研究团队揭示了树突状细胞在组织间隙迁移过程中,被肿瘤微环境抑制的新机制。他们还提出利用Pde5抑制剂——西地那非恢复树突状细胞功能的新型肿瘤免疫治疗策略。相关......

免疫联合治疗+转化手术可延长中晚期肝癌患者生存期

近日,北京协和医院肝脏外科副主任赵海涛主任医师、杨晓波副主任医师团队采用回顾性队列研究证实,对不可切除的肝细胞癌中晚期患者采取免疫联合治疗后,再实施手术,可显著延长患者生存期,且治疗的安全性良好。这一......

我国科研团队发现外周神经系统存在新型“免疫哨兵”

记者7日从中国科学院深圳先进技术研究院了解到,该院研究员李汉杰团队在人体外周神经系统内发现了小胶质细胞,刷新了过去科学界认为这种“免疫哨兵”只存在于大脑和脊髓的观点,为进一步研究外周神经系统发育及相关......

科学家发现肿瘤免疫治疗耐药新机制

复旦大学附属华山医院教授刘杰、研究员骆菲菲团队,揭示了STING激动剂诱导单核细胞内源性PD-L1介导免疫抑制的全新机制,并提出通过STING信号重编程提升治疗疗效的新策略。3月10日,相关研究发表于......