近日,曼彻斯特大学Irina Grigorieva博士领导的科研团队在Nature Communications上发表研究,揭示了如何利用石墨烯制造初级磁矩并自如地控制其开关转换。
磁性材料与现代社会的方方面面都息息相关,它们在含有微型磁性元件的电子工具,诸如硬盘、存储芯片和传感器中都有所应用。每个微磁铁都有‘0’和‘1’的信息来进行磁化方向“北”和“南”的信息存储。在电子领域,这被称之为电子自旋技术。
电子自旋虽优点多多,但也有其缺点,即不能够支持有源器件;而在有源器件中,南北方向的转换跟晶体管中的南北方向转换是类似的。如今,Irina Grigorieva博士的团队则成功解决了这个难题。
众所周知,石墨烯是由碳原子构成,而引起“微观孔洞”也叫做“空位”的那些原子通过一定的技术手段是可以移除的。曼彻斯特大学的科学家们发现,电子围绕这些孔洞凝结成云状,这些云状的电子像微观磁铁一样带着一个单位的磁性和一个单位的旋转。
Grigorieva博士和她的团队发现,这些磁性云能够可控制地消散并重新凝结在一起。
她说,这一发现使得我们能够研发新型的类晶体管设备,利用石墨烯磁性和非磁性状态的相互转换来书写信息。这些磁性和非磁性的状态既可以用通电流的传统方法读出,也可用自旋流的方法读出。这种晶体管可以说是电子自旋技术中的“圣杯”。
Rahul Nair博士说,过去我们只能实现磁铁由北到南的磁化,而现在我们完全可以对磁性进行开关控制。
该研究合作者,同时也是诺贝尔奖的获得者Andre Geim补充到:石墨烯究竟保留了多少让人惊喜的特性目前仍未可知,不过,现如今的研究成果可所谓是青出于蓝而胜于蓝。拭目以待,数年后可转换磁性技术将会带来更大的技术飞跃。
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......
图1上半部分:真实原子中的(a)未杂化的轨道和(b)sp2轨道杂化示意图;下半部分:人造原子中的(c)圆形势场和(d)椭圆形势场示意图图2(a,b)数值计算的杂化态(θ形和倒θ形);(c,d)实验观测......
北京时间3月7日,华东理工大学材料学院清洁能源材料与器件团队侯宇教授、杨双教授等在《Science》(《科学》)发表石墨烯-聚合物机械增强钙钛矿材料的新方法。这一方法用来解决“钙钛矿太阳能电池稳定性差......
日前,天津大学教授胡文平、雷圣宾、李奇峰和副教授沈永涛联合团队在国际知名期刊《自然·材料》上发表了研究成果。该团队开发了一种名为“石蜡辅助浸入法”的新技术,成功制备出具有可控手性的石墨烯卷,为二维材料......
日前,我国科学家开发了一种名为“石蜡辅助浸入法”的新技术,成功让二维材料“卷起来”,制备出具有可控手性的石墨烯卷,为......
记者25日从天津大学获悉,该校3位教授胡文平、雷圣宾和李奇峰合作开发出一种名为“石蜡辅助浸入法”的新技术。该技术能够让石墨烯“卷”起来,并精确控制其“卷曲方向”,制备出具有可控手性的石墨烯卷。这一突破......
对于中北大学材料科学与工程学院教授孙友谊而言,科研的路上没有什么“不可以”。为了得到足量高品质石墨烯,做了14年下游产品研发的孙友谊可以亲自上阵,从头开始制备原材料;为了达到中试级别的量产,他可以自己......
2月8日,春节喜庆气氛尚未散去,中国航空发动机集团北京航空材料研究院(以下简称“航材院”)石墨烯航空电池......