一个由中国吉林大学、美国华盛顿卡内基研究所等单位研究人员组成的国际小组合作,通过对一种半导体施加压力,将其转变成了“拓扑绝缘体”(TI)。这是首次用压力逐渐“调节”一种材料,让它变成了拓扑绝缘状态,也为先进电子学应用领域寻找TI材料开辟了新途径。相关论文在线发表于《物理评论快报》上。
拓扑绝缘体内部绝缘而表面或边缘能导电,具有独特的电学性质。目前,研究人员能通过掺杂(加入少量其他元素)或“种植”(在基质上生长一个样本,基质是经过选择的,以引入结构系,样本在生长过程中会有轻微结构改变)的方法引发拓扑绝缘态,这两种方法都能改变电子行为,使一种材料表现得像TI材料,但它们还有其他问题。掺杂往往会带来缺陷,使材料性质不均一;基质诱导结构系产生的TI材料不能连续调节,也无法可控地研究材料是怎样从普通绝缘体转变为拓扑绝缘体的。
用压力避免了这些缺点。该实验在布鲁克海文国家实验室的国家同步加速器光源(NSLS)上进行,研究中所用的半导体是一种铋、碲和碘的化合物(BiTeI)。研究人员给一个BiTeI样本施加了10GPa(大致相当于10万倍大气压)的压力,并用NSLS的X-射线衍射和红外光谱两种光束技术跟踪观察其内部结构和电子的变化。分析显示,BiTeI在压力范围2GPa到8GPa时变成了拓扑绝缘体。
“扩充拓扑绝缘材料家族非常困难。”论文第一作者、布鲁克海文实验室研究助理奚潇湘(音译)说,“实验表明,压力是引起拓扑绝缘相态的一种有效方式,这一技术对研究从普通材料到TI材料的相态转变也非常有用。”
中国科学技术大学教授吴文彬和王凌飞团队联合西北大学教授司良团队,制备了广谱高效的新型超四方相水溶性牺牲层材料Sr4Al2O7,可用于制备多种高质量自支撑氧化物薄膜。1月26日,相关研究成果以研究长文形......
电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,......
拓扑绝缘体由于具有受时间反演保护的拓扑表面态而展现出许多新奇特性,例如量子自旋霍尔效应、磁掺杂时的量子反常霍尔效应以及在拓扑/铁磁异质结中的非局域磁阻尼贡献等。这种拓扑表面态通常寄宿在样品表面约几个纳......
意大利国家研究委员会微电子与微系统研究所(CNR-IMM)开展了一项研究,发现在硅衬底上拓扑生长的绝缘体——碲化锑(Sb2Te3)中,纯自旋电流和“传统”电流之间的转换效率很高。相关成果发表在《Adv......
美国能源部国家加速器实验室和斯坦福大学的研究人员开发了新的方法,以探测拓扑绝缘体中的强场物理学:使用中红外激光穿过三维拓扑绝缘体(Bi2Se3)来激发高次谐波产生(HHG),并分析被转换至更高能量和频......
自旋流的产生、操作和探测是自旋电子学研究的最基本问题,其中一个关键目标是在室温以上实现电荷流-自旋流的高效转换。电荷流-自旋流转换效率与材料中的自旋-轨道耦合密切相关,通过逆自旋霍尔效应(Invers......
日前,浙江大学信息与电子工程学院教授陈红胜课题组成功研制出首个三维光学拓扑绝缘体,将三维拓扑绝缘体从费米子体系扩展到了玻色子体系,有望大幅度提高光子在波导中的传输效率。研究成果今日于《自然》杂志正式发......
拓扑绝缘体是当前凝聚态物理研究的重要量子材料之一。理想的拓扑绝缘体体内为绝缘态,而表面为金属态,表面电子态受轨道-自旋相互作用和时间反演对称性的保护。由于具有M2X3(M通常为五族金属元素Bi或Sb,......
拓扑绝缘体是当前凝聚态物理研究的重要量子材料之一。理想的拓扑绝缘体体内为绝缘态,而表面为金属态,表面电子态受轨道-自旋相互作用和时间反演对称性的保护。由于具有M2X3(M通常为五族金属元素Bi或Sb,......
反常霍尔效应是磁性材料的基本输运性质之一。经过长达一百多年的研究,直至本世纪初物理学家们才认识到反常霍尔效应与电子能带的贝里曲率相关。近年来,磁性拓扑绝缘体中的自旋结构、贝里曲率和反常霍尔效应之间的关......