发布时间:2019-03-29 13:20 原文链接: 金属所等发现固体庞压卡效应

  制冷技术在当今社会工农业生产、日常生活等多个领域均起到至关重要的作用,联合国统计数据表明全球每年25-30%的电力被用于各种各样的制冷应用。而这些应用绝大部分依赖传统的气体压缩制冷技术,普遍使用对环境和人体有害的制冷剂。因此,寻求绿色、环保、低能耗的替代制冷方案已经成为学术界和工业界共同努力的方向。

  近年来,基于固态相变热效应(caloric effects)的固态制冷技术被认为是最有希望取代传统气体压缩制冷的技术方案。固态相变热效应主要包括磁卡效应(magnetocaloric effect, MCE)、电卡效应(electrocaloric effect, ECE)、弹卡效应(elastocaloric effect, eCE)以及压卡效应(barocaloric effect, BCE)。前三者分别源于相应外场对铁性体系(ferroics)中磁矩、铁电极化或晶体结构畴的有序度的调控,而后者则常常涉及压力诱导的晶体结构相变。固态相变制冷材料的性能主要由等温熵变所描述。固体压卡效应的制冷循环,如图1所示。遵循以上的物理认识,经过数十年的发展,主流固态相变制冷材料的等温熵变提高到了50 J kg-1K-1左右,且需要较大的外场,这成为该技术走向应用的障碍。因此,如何提高固态相变制冷材料的性能成为一个兼具物理意义和应用价值的研究课题。

  中国科学院金属研究所功能材料与器件研究部研究员李昺、张志东、任卫军等组成的研究团队在一系列称为塑晶(plastic crystals)的有机材料里发现了基于分子取向序的压卡效应,等温熵变最高达687 J kg-1K-1,较传统固态相变制冷材料高出了一个数量级,见图2。塑晶是一类高度无序的固体材料,其有机分子或者无机结构单元的取向完全无序,但是质心位置却构成了长程有序的晶格。在这些体系中,所需驱动压力极低,且材料十分廉价,具有诱人的应用前景。选择新戊二醇(英文名:neopentylglycol,缩写为NPG;分子式:C5H12O2;IUPAC名称为2,2-Dimethylpropane-1,3-diol)为模型材料,运用高压热测量技术、高压中子散射技术、高压同步辐射X射线衍射技术等,揭示了塑晶材料出现庞压卡效应的深层次物理机制。该项研究工作发表于《自然》(Nature 567, 506 (2019)),李昺为该文的独立第一作者兼通讯作者。该杂志同期还刊登了评述性短文“Refrigeration based on plastic crystals”来阐述该项工作的内涵和意义。

  金属所研究人员和日本大阪大学副教授Takeshi Sugahara合作,利用高压微量热仪测量了NPG在高压条件下的等温熵变,发现在45.0MPa压力下熵变已经达到最大值——389 J kg-1K-1,且在15.2 MPa下已经达到了最大值的一半(图3b)。这一驱动压力较传统压卡效应材料低很多,具有明显的应用优势。接下来,在日本大型同步辐射光源博士SPring-8 Saori I. Kawaguchi、Shogo Kawaguchi、Koji Ohara、陈艳娜、教授Osami Sakata的协助下,分别在BL02B2谱仪和BL04B2谱仪进行了高分辨同步辐射X射线衍射和高压同步辐射X射线衍射测量,发现压力可以驱动材料发生从无序到有序的相变(图3c)。最为关键的是在日本散裂中子源(J-PARC)中子科学部主任Kenji Nakajima、副主任Yukinobu Kawakita、博士Seiko Kawamura、Takanori Hattori和Tatsuya Kikuchi的全力支持和多方协调下,突破重重技术难关,在极短时间内成功实现了高压超高精度准弹性中子散射测量。利用世界上能量分辨率最高的冷中子时间飞行谱仪AMATERAS和特殊设计加工的高压样品腔,获得了高压环境下NPG样品的准弹性中子散射谱,直接从原子层次揭示了压力对分子取向无序的抑制是产生庞压卡效应的本质原因(图3d  -g)。这一实验结果也被美国佛罗里达州立大学助理教授Shangchao Lin组的分子动力学模拟结果所证实(图3h,i)。同时与澳大利亚核科技组织(ANSTO)博士Dehong Yu、Richard Mole合作,在时间飞行谱仪PELICAN上获得完整的晶格动力学数据,发现了强烈非简谐特征。

  借助大科学装置的强大实验能力,该研究团队成功确立了庞压卡效应的物理机制,从本质来源角度确认了庞压卡效应的发现。塑晶这一特殊物态,兼有晶体和液体的特征。巨大的分子取向无序导致了固态相变处的熵变比熔化熵还大,无序自由度在系统总自由度的占比接近维持固体刚性的极限;分子间的弱相互作用导致极大的压缩性,微小压力即可驱动相变;强烈的晶格非谐性使得晶格的压力效应得以转化为熵变。该研究中所报道的这些有机材料所需驱动压力小、成本低廉,具有明显的应用价值。同时,将塑晶引入固态相变制冷材料研究领域,将极大地丰富固态相变制冷研究的材料体系,为发现和设计性能更加优异的材料提供了可能。


相关文章

双相合金强韧化方面研究取得突破性进展

记者3日从西北工业大学获悉,该校科研团队在双相合金强韧化方面研究取得突破性进展,提出了双相合金的相选择再结晶概念,实现了双相合金力学性能的显著提升。这一研究成果,让人类制造出密度低、强度高,且具有良好......

分子筛膜多维构筑基元述评文章

近日,大连化物所所无机膜与催化新材料研究组(504组)杨维慎研究员、班宇杰副研究员受邀撰写了分子筛膜多维构筑基元评述文章,系统总结了研究团队在分子筛膜构筑基元的多维度发展、变革等方面所做出的探索和努力......

AdvancedMaterials:我国开发可穿戴金属有机框架传感器

汗液中包含了很多人体健康信息,利用可穿戴式汗液传感器可以从中收集各种生理数据用于监测人体健康。金属有机框架(MOFs)作为传感器一种新型的电子活性材料,将MOFs直接集成到柔性电子装置中用于可穿戴汗液......

新技术可制造模拟活血管的材料

澳大利亚悉尼大学领导的一个国际研究联盟开发了一种技术,可制造模拟活血管结构的材料,这对外科手术的未来具有重大意义。临床前测试发现,将人造血管移植到小鼠体内后,身体接受了这种材料,新的细胞和组织能在正确......

加快推进前沿新材料发展北京石墨烯论坛举行

由北京市科学技术委员会、中关村科技园区管理委员会指导,北京石墨烯研究院(BGI)主办的“北京石墨烯论坛2022”23-25日在北京举行。论坛开幕式上,北京市政协副主席、北京市工商联主席燕瑛指出,首都经......

“分子机器”提供肿瘤复合治疗新策略

癌症以高发病率和高死亡率严重威胁着人们的生命健康。因此,寻找肿瘤治疗新原理、新方法,提高治疗效果,并降低副作用,是当前生命化学和医学领域亟待解决的科学问题。近日,华东理工大学化学与分子工程学院副教授钱......

科学家发明一种新型AI材料可自我学习并形成“肌肉记忆”

就像一个不用看琴键就能熟练弹奏的钢琴家,美国加州大学洛杉矶分校的机械工程师设计出了一种新的材料,可随着时间的推移学习行为并发展出它自己的“肌肉记忆”,允许实时适应不断变化的外力。该材料由一个具有可调梁......

我所制备限域MOF材料用于高性能电解水反应

近日,我所理论催化创新特区研究组(05T8组)肖建平研究员团队与中国科学院宁波材料技术与工程研究所张涛研究员团队、浙江大学侯阳研究员团队在电解水材料设计中取得新进展,制备了限域环境下的NiFeMOF材......

自然基金委发布高性能材料基础研究重大研究项目指南

国家自然科学基金委员会现发布功能基元序构的高性能材料基础研究重大研究计划2022年度项目指南,请申请人和依托单位按项目指南中所述的要求和注意事项申请。国家自然科学基金委员会2022年10月18日功能基......

新材料可延长航天装备服役期

科技日报莫斯科10月10日电(记者董映璧)俄罗斯南乌拉尔国立大学和中国、波兰同行们共同研发出能够延长航空航天领域贵重零件服役期的新材料,还能保护金属涂层免遭腐蚀。相关研究发表在最近的《合金与化合物杂志......