近来抗药性细菌的增加成为大众健康的严重威胁,人们需要新的治疗手段来应对这类细菌的感染。美国科学家在11月14日出版的《分子细胞》杂志上发表文章表示,他们找到了一种新的毒素,能够通过阻断DNA复制机能来抑制细菌的生长。该发现为开发下代抗生素奠定了基础。
美国麻省理工学院科学家、研究文章作者迈克尔·劳勃说,他领导的研究小组寻求新抗生素作用对象的灵感源于对细菌本身的认识。通过研究细菌自身产生抑制生长毒素的途径,有望寻求线索探讨过去从未考虑过的抗生素作用对象。
细菌生长在某种程度上是由毒素/抗毒素(TA)多系统(也就是一组基因)所控制的,每个系统的特征是编码有两种蛋白:毒素和抗毒素。这些蛋白通常是无毒性复合物,但是处于紧张环境下,抗毒素会降低,随即显现出毒性,从而抑制细菌增殖。虽然毒素/抗毒素系统在控制细菌生长中具有重要作用,但是人们对其如何工作的问题几乎没有认识,并且在当前临床中,它们不是任何抗生素的作用对象。
在新的研究中,劳勃的科研小组确定了名为SocAB的毒素/抗毒素系统。与其他的毒素/抗毒素系统不同,SocAB能够将病毒的DNA复制机能作为攻击对象。准确地说是系统中的SocB毒素通过与DnaN蛋白相互作用而阻止DNA复制机能并抑制细菌生长。此外,研究小组还找到了DnaN蛋白区域。研究显示,利用能模仿SocB毒素功能的其他抗体来攻击DnaD蛋白区域,有望在未来有效地对付抗药性细菌。
劳勃表示,他们的研究结果揭示了意想不到的、潜藏在毒素/抗毒素系统中的分子机理多样性。由于细菌中存有大量的DnaN蛋白,因而将DNA复制机能的该部分作为攻击目标或许是抑制细菌生长的有效战略途径。
在显微镜下的微观世界里,那些我们肉眼看不到的小生命,每天都上演着惊心动魄的“饥饿游戏”。最近,美国亚利桑那州立大学、瑞士苏黎世联邦理工学院以及瑞士联邦水科学与技术研究所组成的国际科研团队,发现了一种令......
在微观世界里,微生物会争夺地盘、向敌人喷射化学物质,有时还会利用微观地形来获得优势。一项研究发现,细菌可以利用邻近酵母细胞形成的液体小囊加速移动。这些微观的水分痕迹使细菌能够游得更远、传播得更快,揭示......
研究人员发现,即使使用60℃高温水洗程序清洗衣物,洗衣机仍无法清除潜在有害细菌,这一发现可能与抗生素耐药性上升有关。近日,PLoSOne发表的一项研究表明,受污染的织物可能成为持续数周的感染源,但研究......
水稻白叶枯病、番茄青枯病、猕猴桃溃疡病……这些细菌性病害会引发作物叶斑、枯萎、腐烂,严重时可造成作物绝收。然而,传统抗细菌农药不仅种类匮乏,而且大多采用铜制剂和抗生素等方式“无差别杀菌”,对环境并不友......
记者11日从中国海洋大学获悉,该校海洋生命学院汪岷教授团队基于序列比对和图论方法,开发了病毒分类新工具ViralTaxonomicAssignmentPipeline(VITAP)。该成果近日在国际知......
“惊蛰”节气过后,植物苏醒,展现出勃勃生机,但那些看不见摸不着的病毒也开始“兴风作浪”。当植物得了病毒病,生长受阻,病毒是如何在植物体内“作恶”的?这一机制一直未被揭露。3月5日,山东农业大学园艺学院......
近日,东北农业大学单安山教授团队成功构建了兼具抗菌活性和细胞穿透活性的“双功能”自组装纳米抗菌肽用于对抗细胞内细菌,相关成果发表在《先进科学》上。“双功能”自组装纳米抗菌肽的性能。东北农业大学供图随着......
鹏城实验室-北京大学联合团队与广州实验室研究员周鹏团队合作,研究实现了跨病毒类型和跨毒株的通用预测,涵盖新冠、流感、寨卡和艾滋病病毒,展现了AI助力自然科学研究范式革新的巨大潜力。近日,相关成果发表于......
在人类肉眼难以察觉的微观世界中,微生物无处不在,它们之间的博弈与互动构成了复杂的生态系统网络。铁是微生物维持生存的必需元素,也是微生物之间的博弈互动所争夺的核心稀缺资源。然而,微生物在铁元素博弈中遵循......
在与太阳无休止的斗争中,人类皮肤可能有一些意想不到的微观盟友。暴露在紫外线下会破坏细胞中的DNA,增加一个人患皮肤癌的可能性。但是,根据近日发表于《癌细胞》的一项对小鼠和人类的研究,正常人类皮肤上常见......