Jennifer A. Doudna(左)
很少有发现能够像CRISPR那样在一夜之间改变整个领域。CRISPR-Cas原本是原核生物的适应性免疫系统,自从人们发现了Cas9的应用潜力,这一系统迅速成为了炙手可热的基因组编辑工具。加州大学伯克利分校的Jennifer A. Doudna在本期Molecular Cell杂志上发表文章,全面探讨了CRISPR-Cas9在各方面的应用。Doudna是CRISPR技术的共同开发者,曾因这一技术获得了“生命科学突破奖”(Breakthrough Prize),也是CRISPRZL的有力竞争者。
人们发现Cas9的分子功能之后,很快开始用Cas9和sgRNA编辑基因组。CRISPR-Cas9让以往费时费力的基因组编辑变成了一件非常容易的事。
Cas9在sgRNA的引导下,靶标目的位点并诱导双链断裂DSB,细胞通过NHEJ(non-homologous end-joining)将其修复。NHEJ是一个容易出错的修复通路,会产生插入/缺失(indel)破坏开放阅读框,导致基因失活。CRISPR-Cas9在这方面的编辑效率可以高达80%。
HDR(homology-directed repair)可以让CRISPR-Cas9的基因组编辑更加精确。将Cas9-sgRNA与供体DNA结合起来,细胞就能用供体DNA作为模板来修复DSB。这一策略可以向目的基因引入新序列或者特定突变,模拟或者矫正致病性的等位基因。不过HDR的效率显著低于NHEJ。
用CRISPR-Cas9对模式生物进行基因组编辑已经常规化了,人们又发现了一些更有趣的应用。举例来说,同时表达Cas9和多种sgRNA可以实现多重化靶标。除了同时编辑多个染色体位点以外,CRISPR-Cas9还可以删除染色体大片段,这需要两个sgRNA在目标区域两侧诱导DSB。此外,CRISPR-Cas9还可以模拟肿瘤中发生的大规模的染色体重排。
最近有不少研究利用CRISPR-Cas9的可编程特性进行全基因组筛选。比如说,用慢病毒sgRNA文库和催化活性的Cas9可以在人类和小鼠细胞中进行功能缺失的基因敲除筛选。这样的筛选可以揭示细胞生存的必需基因,以及涉及特定药物抗性的基因。
失去催化活性的Cas9 (dCas9)也可以用来进行全基因组筛选,它可以直接上调或者下调基因表达。与生成indel的活性Cas9相比,在某些情况下dCas9的转录沉默能够更有效的阻断基因表达。不过dCas9在这方面的最大优势是,介导转录激活子的招募,进行功能获得性筛选。
通过点突变失活Cas9的催化活性位点,就会得到dCas9。dCas9依然可以在RNA的引导下,实现可编程的DNA结合。人们利用这一点开发了调控基因表达的新工具。
dCas9与sgRNA一起在细菌中表达,可以阻止RNA聚合酶与启动子结合,下调特定转录本的表达。人们还将dCas9与特定的效应子结构域融合起来,将转录抑制因子或转录激活因子招募到特定的基因组区域,在真核生物中实现更强的基因表达控制。除此之外,将dCas9与带有表观遗传学标签的效应子结构域融合,还可以特异性的干扰表观遗传学调控。
dCas9还有一些其它的用途:dCas9与GFP融合能够在活细胞中成像DNA位点,进一步揭示基因组特定位置的动态和结构。人们还可以通过dCas9介导的转录调控构建稳固的基因回路,这对于合成生物学来说非常实用。最近还有研究表明dCas9可以结合单链RNA,这意味着在不久的将来人们有望对RNA转录本进行编程操作。
为了减少CRISPR-Cas9的脱靶效应,人们开发了一系列策略。研究者们用成对的sgRNA引导Cas9切口酶变体,在sgRNA结合的地方造成单链切口(SSB),两个相邻的单链切口会形成一个DNA双链断裂(DSB)。而单个sgRNA造成的SSB能通过碱基切除修复得到精确修复,不引入插入或缺失突变。
研究者们还对Cas9进行了基因工程改造,让其依赖二聚化才能酶切,就像锌指核酸酶(ZFN)和TALEN那样。研究显示,dCas与Fok1核酸酶融合之后,DSB形成依赖于FokI的二聚化。二聚化酶对序列的要求更为严格,可以大大减少脱靶位点的数量。Cas9-FokI单体无法进行酶切。
人们还发现,适当截短sgRNA可以减少脱靶事件,同时不牺牲正确编辑的效率。只需要缩短gRNA靶标区域的长度,就可以使脱靶突变大幅减少。研究表明,17/18个核苷酸的靶向区域能够比全长gRNA更有效地靶向预定序列。
CRISPR-Cas9在医疗领域有着广阔的前景,可以用来矫正致病突变,治疗人类疾病。研究者们也在尝试用这一技术操纵生态群体,比如根据毒力或者抗性基因杀死相应的细菌、快速改变种群性状、控制入侵物种、改良主要农作物等等。此外,CRISPR-Cas9还有着很大的潜力,可以被改造为更强大的研究工具。Doudna指出,这一技术将带领生物学研究进入一个新的时代。
植物是复杂的生物系统。植物体内基因的表达受到多种水平的调控,如转录水平、转录后水平、DNA甲基化/去甲基化等,从而对基因表达进行精密高效的调控。中国科学院遗传与发育生物学研究所张劲松研究组筛选OsEI......
植物是复杂的生物系统。植物体内基因的表达受到多种水平的调控,如转录水平、转录后水平、DNA甲基化/去甲基化等,从而对基因表达进行精密高效的调控。中国科学院遗传与发育生物学研究所张劲松研究组筛选OsEI......
神经变性疾病早期阶段的特征是离散脑细胞群中蛋白质的积累以及这些脑细胞的退化,对于大多数疾病而言,这种选择性的易感性模式是无法解释的,但其对于病理性机制或许能提供重要的见解。阿尔兹海默病是世界上主要的痴......
行业主要上市公司:金斯瑞(HK.1548)、凯赛生物(688065.SH)、华熙生物(688363.SH)、华恒生物(688639.SH)、川宁生物(301301.SZ)等本文核心数据:ZFNs技术;......
长期以来,人们普遍认为,脱氧核糖核酸(DNA)决定了生物体的全部表型。但问题来了,在相同环境中成长的同卵双胞胎,身高、肤色、性格、健康状况等并非完全相同,这是为什么?为了揭开表观遗传的“神秘面纱”,科......
近日,“女娲”基因组团队重点阐释了适应性选择下非编码调控元件对表型演化的影响,相关研究发表于《分子生物学与进化》。这项工作是中国科学院生物物理研究所徐涛院士、何顺民研究员牵头的“女娲”(NyuWa)中......
纽约大学格罗斯曼医学院(NYUGrossmanSchoolofMedicine)的研究人员进行的一项新研究表明,我们远古祖先的基因变化可以部分解释为什么人类不像猴子那样有尾巴。这项研究成果最近发表在《......
猴子有尾巴,而人类和猿类的尾巴却在进化中消失了,是什么在其中起了关键作用?《自然》28日发表的一篇论文,报道了人类和猿类演化掉尾巴的遗传学基础。灵长类动物尾部表型的系统发育树(Ma表示百万年前)。图片......
意大利科学家在一项小鼠研究中展示了无需永久性基因组编辑,也可对一个控制胆固醇水平的基因做到长效抑制。这一靶向表观遗传沉默(不用直接改变DNA序列就可改变基因功能)的效果在小鼠中持续近1年,令循环胆固醇......
2月27日,安捷伦科技公司(纽约证券交易所代码:A)公布截至2024年1月31日的2024财年第一季度财报。第一季度营收为16.6亿美元,与2023年第一季度相比下降5.6%,核心营收(1)下降6.4......