10月25日Science发表了CRISPR技术先驱张锋研究组的最新成果:RNA editing with CRISPR-Cas13,咋一看这个标题还以为是张锋一稿多投,因为实在是与本月初他们研究组发表在Nature的论文标题太像了(Nature论文:RNA targeting with CRISPR–Cas13)。这两篇论文聚焦的都是CRISPR的另外一大技术应用:RNA靶向编辑。

  将RNA编辑酶融合到靶向RNA的Cas蛋白中,这样研究人员就能编辑人体细胞中特定的核苷酸了,张锋研究组将这种方法称为RNA Editing for Programmable A-to-I replacement (REPAIR), 这一技术不仅可以用作研究工具,而且可作为由突变引发的疾病的临时治疗方法。

  来自哈佛大学的化学生物学家David Liu(未参与该项研究)点评道:“这项工作是一个非常有成效,令人令人印象深刻的研究成果,它提出了编辑RNA转录本。从而以编程的方式改变其编码的潜力可能性。对于通过靶标RNA序列的暂时变化达到最好解决问题的应用,这种方法具有很强的潜力”。在同期Nature杂志上,Liu也报道了一种类似的编辑DNA特异性核苷酸的方法

  靶向RNA

  CRISPR这一明星技术在基因组DNA编辑方面发挥了许多重要的作用,虽然其主要应用于DNA,但一些新的研究已将它的范围扩展至RNA编辑。去年Nature Methods评选出的年度技术中就有将革命性的CRISPR基因编辑技术用来靶向RNA,其中的一大进展就是麻省理工张锋研究组关于能够靶向和降解RNA的一种RNA引导酶——C2c2(也被称为Cas13a)功能特征的研究。

  在此基础上,张锋研究组在10月5日Nature杂志上又公布一项成果,证实了切割RNA的Cas13a酶能够特异性地降低哺乳动物细胞中的内源性RNA和报告RNA水平。并指出这种方法比RNA干扰(RNAi)的效率更高,能被用于抑制细胞RNA靶标,结合和富集感兴趣的RNA,以及通过序列特异结合对细胞内的RNA进行成像。

  研究人员发现切割RNA的Cas13a酶,能够特异性地降低哺乳动物细胞中的内源性RNA和报告RNA水平。而且他们也指出与在细菌中不同的是,Cas13a在人细胞系中,仅仅只是靶向gRNA指定的RNA,细胞中所有其它的RNA保持完整。他们分离得到了Leptotrichia wadei的Cas13a酶,构建出了一种双质粒RNA靶向CRISPR系统,这一系统能在不同的质粒上表达导向RNA(gRNA)和Cas13a基因,其中Cas13a基因含有一种经过改造的核定位序列。在人细胞系中,这种CRISPR-Cas13a系统能高效地切割报告质粒中转录的RNA和三种内源性基因转录的RNA。

  在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a一大优势就在于其具有更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。

  RNA编辑

  虽然人体很多疾病是来自于DNA,但是由于基因承载着生命最根源的信息,因此直接对DNA进行编辑会出现安全和伦理上的问题。而RNA编辑却不同,通过编辑RNA能暂时性的纠正DNA翻译的信息,让蛋白质接收到正确的信息,达到治疗的效果,这可能是更加有效的一种临床应用方式。

  在这项最新研究中,张锋研究组的一名成员Omar Abudayyeh就对此产生了兴趣,他提出了问题:“我们还能利用Cas13酶做什么?”他的一个想法是通过蛋白质的RNA靶向能力来召集RNA编辑酶,从而能在特定部位进行确定的核苷酸编辑。

  RNA编辑是转录进程中的一种形式,其中涉及核苷酸替换的酶调控。最主要的RNA编辑是A(adenosine)-to-I(Inosine) 的修饰,这个过程受到蛋白酶ADAR(adenosine deaminases that act on RNA )的催化调控。

  张锋研究组构建了一种新型融合蛋白,即将ADAR的催化结构域和Cas13b的一个催化内含子拼接在一起,这一蛋白具有靶向人体细胞中任何靶标RNA的能力,张锋等人将其称为REPAIR。REPAIR具有安全性和灵活性两大特征,无需修改基因组就能修复突变,而且RNA会自动降解,因此对它的修改或是可逆的。

  罗切斯特大学的RNA生物学家Mitchell O'Connell(未参与该项研究)表示,“在治疗上,对于某些遗传疾病,编辑基因组,永久性地固定一种突变也许更合适,但对于需要基因表达短期变化的疾病来说,RNA编辑可能更有效。”

  在此基础上,研究人员还对REPAIR进行了优化,令其在转录组中可检测到的脱靶次数从1.8万次降至20次。这一编辑器对靶标RNA的编辑效率为20%-40%,最高甚至可以达到51%。

  为了验证REPAIR的作用,研究人员将其应用于恢复两种疾病相关的G-A突变,一种是糖尿病,另一种是Fanconi贫血症。他们将REPAIR引入到细胞中,结果证实REPAIR可以在RNA水平上修复致病突变。

  目前研究人员还在进一步探索这一工具的使用,来自美国国家生物技术信息中心的计算生物学家Eugene Koonin(未参与该项研究)表示,“这篇文章只是一个开端,”Cas13b可能可以融合到多种编辑酶上,这些酶也许能用于一系列不同的序列变化。

相关文章

高彩霞团队开发出不依赖CRISPR的全新碱基编辑工具

基因组编辑可以对生物体遗传信息进行精准、高效的修饰,已成为生命科学领域的一项颠覆性技术。通过融合nCas9(切口酶形式的Cas9)与脱氨酶,美国哈佛大学DavidLiu团队先后开发出胞嘧啶碱基编辑系统......

高彩霞团队开发出不依赖CRISPR的全新碱基编辑工具

基因组编辑可以对生物体遗传信息进行精准、高效的修饰,已成为生命科学领域的一项颠覆性技术。通过融合nCas9(切口酶形式的Cas9)与脱氨酶,美国哈佛大学DavidLiu团队先后开发出胞嘧啶碱基编辑系统......

NatureMethods:北大汤富酬团队揭示单个细胞内高阶染色质结构

调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......

一度被拒稿的论文登上Nature,“光补实验就补了两年”

2015年,22岁的傅凌岚刚刚来到加拿大不列颠哥伦比亚大学,跟随李宏斌教授读博,此时高分子材料背景的她,对生物学的认识还停留在高中水平。而今天,她已经就职于一家国际著名抗癌药物研发公司,为人们的生命健......

上海药物所等构建出全新的纳米载体靶向效率的高精度可视化评估方法

肿瘤的异质性和复杂的微环境是导致药物递送系统的靶向性和疗效不佳的重要原因。探究肿瘤病灶在各阶段的血管、细胞构筑以及细胞外基质通透性的变化规律,深化对肿瘤异质性和肿瘤治疗的结构认识,有助于解决药物递送的......

颠覆传统!锂电池今日登上Nature封面!

电沉积锂(Li)金属,对高能电池至关重要。然而,同时形成的表面腐蚀膜称为固体电解质界面(SEI),使沉积过程复杂化,这使得人们对锂金属电沉积的理解很差。在此,来自美国加州大学洛杉矶分校的Yuzhang......

医学界的里程碑还是昙花一现?CRISPR疗法治病能走多远

维多利亚·格雷患有一种被称为镰状细胞病的遗传性疾病,这种疾病会导致红细胞形成异常的“镰刀”形状,阻塞毛细血管,患者不但疼痛异常,还可能造成器官损伤。自记事起,疼痛就一直伴随着格雷。随着年龄的增长,她的......

医学界的里程碑还是昙花一现?CRISPR疗法治病能走多远

维多利亚·格雷患有一种被称为镰状细胞病的遗传性疾病,这种疾病会导致红细胞形成异常的“镰刀”形状,阻塞毛细血管,患者不但疼痛异常,还可能造成器官损伤。自记事起,疼痛就一直伴随着格雷。随着年龄的增长,她的......

研究表明丨肝脏具有神经保护作用

创伤性脑损伤(Traumaticbraininjury,TBI)是全球性的公共医疗和社会经济问题,具有病情急、变化快、病死率高、致残率高、预后差等特点。据估计,全球每年约有5000万人遭受创伤性脑损伤......

基于序列的药物设计新方法

20世纪90年代以来,基于蛋白质结构的药物设计(SBDD)一直是创新药物发现的主流方法,在针对具有明确靶标的疾病治疗方面取得了进步。这种方法一般涉及多个步骤的复杂流程,包括建立蛋白质的三维(3D)结构......