Antpedia LOGO WIKI资讯

清华大学张强课题组锂金属负极研究系列进展!

随着电动汽车、便携式电子器件、智能手机、电动工具等的快速发展与广泛应用,发展高能量密度的二次电池成为了当前社会的热点需求之一。锂金属负极由于拥有高理论比容量(3860 mAh g-1)和低电极电位(相对标准氢电极-3.040 V)方面的优势,是下一代高比能电池负极材料的理想选择之一。但是,锂金属负极在实际应用时面临着锂枝晶生长和负极体积膨胀等难题。锂枝晶生长过程中容易生成“死锂”,造成电极活性物质损失,不可逆地降低容量;锂枝晶加剧电解液的分解,降低电池库伦效率与循环寿命;更严重的是锂枝晶可能刺穿电池隔膜,接触正极,造成电池内部短路,引发安全隐患。近年来,亲锂负极骨架设计被认为是一种解决锂金属负极枝晶生长和体积膨胀问题的有效手段。如何理解负极骨架亲锂性的化学本质和有效设计亲锂材料是锂金属负极发展过程中的关键科学问题之一。 最近,清华化工系张强课题组在金属锂负极亲锂性理解及材料设计方面取得了一系列原创性进展。在《科学进展》及《......阅读全文

冷冻电镜表征金属锂负极材料,能看到什么?

作为二次电池最理想的负极材料,金属锂早已在锂电池的发展初期得到使用。近几年来,由于具有高能量密度的锂硫和锂氧气电池体系需要金属锂作为负极,金属锂负极材料备受关注。 然而,锂枝晶的生长和较低的库伦效率限制了金属锂作为负极材料的实际应用。目前各研究小组主要专注于以下几个方面来改善金属锂的性能,比如电解液

“房屋架构”复合金属锂负极构筑长循环金属锂电池

  金属锂由于其极高的理论比容量和最负的还原电位而成为下一代高比能量电池的理想负极材料。然而,金属锂负极的实用化道路却十分坎坷。一方面,金属锂面临着其自身特性所带来的内忧:锂离子的沉积与溶出会造成负极体积的巨大变化;更糟糕的是沉积过程锂枝晶的形成可能会刺破隔膜,造成巨大的安全隐患。另一方面,金属锂负

高能量密度无负极锂金属电池研究取得进展

原文地址:http://www.cas.cn/syky/202103/t20210324_4782106.shtml   目前,基于锂离子插层化学的传统锂离子电池已无法满足各种新兴领域对锂电池能量密度的需求,因此,以高能量密度著称的锂金属电池引起研究人员的广泛关注。在锂金属电池中,无负极锂金属电池

​金属锂复合负极材料可提升锂电池能量密度

金属锂可直接作为负极材料,但存在安全隐患,长期循环使用时,会出现体积膨胀、锂枝晶生长等问题,体积膨胀会导致电极结构坍塌,锂枝晶生长会刺穿电池隔膜,造成电池短路。在锂电池中,负极起到氧化作用,是电路中电子流出的一极,负极材料是构成负极的材料,其性能直接影响锂电池的能量密度。可用于负极的材料种类较多,大

“锂”想的负极材料

充电太慢,续航不够,虚电焦虑,是每一个想拥有纯电动汽车的人都绕不过的坎。如果有一天新能源汽车拥有快速充电、续航给力两大超能力,新能源汽车乃至庞大的储能市场将会迎来另一个春天。锂电池是动力电池界的绝对主角,它拥有正极材料、负极材料、隔膜、电解液四个组成部分。负极材料是有可能实现锂电快速充电和增强续航两

清华大学张强课题组锂金属负极研究系列进展!

  随着电动汽车、便携式电子器件、智能手机、电动工具等的快速发展与广泛应用,发展高能量密度的二次电池成为了当前社会的热点需求之一。锂金属负极由于拥有高理论比容量(3860 mAh g-1)和低电极电位(相对标准氢电极-3.040 V)方面的优势,是下一代高比能电池负极材料的理想选择之一。但是,锂金属

锂金属电池负极的非消耗型氟化流体界面调控策略

  为了满足下一代高比能电池的能量密度要求,具有高理论容量和低电化学电位的锂金属是未来可充电池(如Li-S和Li-FeF3)的理想负极。然而,负极锂枝晶不可控生长引起的固态电解质界面(SEI)不稳定、循环过程中锂的体积膨胀以及“死锂”的产生、电池短路等问题,阻碍了锂金属电池(LMBs)的发展。自从采

调控溶剂化和固体电解质层稳定锂金属负极

近日,中科院大连化学物理研究所研究员陈剑团队在金属锂电池电解质研究方面取得新进展,采用锂离子溶剂化调控和固体电解质层形成的双策略,实现金属锂负极的高库伦效率。相关研究发表于《储能材料》。金属锂因其最负的电化学势和高的理论比容量而成为研究的热点。但是,由于锂枝晶生长所造成的安全问题长久以来制约着可充电

北理工在《德国应用化学》发表金属锂负极研究论文

近日,北京理工大学前沿交叉科学研究院黄佳琦特别研究员课题组在金属锂负极保护方面研究取得新进展,相关研究成果以《Solvation Chemistry of Lithium Nitrate in Carbonate Electrolyte for High‐Voltage Lithium Me

宁波材料所在高比能锂金属负极保护方面取得系列进展

  锂金属作为锂二次电池的“圣杯”负极材料,具有3860毫安时/克的高比容量以及最低的氧化还原电位,既可以被应用于锂空气、锂硫等高能量密度体系中,也可以与锂离子正极材料配对实现二次电池能量密度的大幅度提升。然而,受制于锂金属沉积过程中的不规则枝晶生长以及锂金属与电解液的不可逆反应,锂金属负极在循环过