Antpedia LOGO WIKI资讯

研究开发出基于高电压高浓度电解液的钾基双石墨电池

近日,中国科学院深圳先进技术研究院深圳先进集成技术研究所功能薄膜材料研究中心研究员唐永炳带领的研究团队,采用高电压高浓度电解液显著提升钾基双石墨电池的能量密度以及循环稳定性。相关研究成果以6.0 V High-Voltage and Concentrated Electrolyte toward High Energy Density K-Based Dual-Graphite Battery为题,在线发表在Advanced Energy Materials上。 钾基双碳电池(K-DCB)结合双离子电池电压高、成本低、环境友好的特点以及钾资源储量丰富的优势,在规模化储能领域具有应用前景。作为活性离子来源,电解液对K-DCB的性能包括容量、能量密度、循环寿命等有重要影响。然而,目前基于KPF6钾盐以及碳酸酯类溶剂的电解液体系浓度低(<1 m)且氧化电位不足,导致K-DCB循环稳定性差,能量密度也有待提升。鉴于此,唐永炳......阅读全文

研究开发出基于高电压高浓度电解液的钾基双石墨电池

  近日,中国科学院深圳先进技术研究院深圳先进集成技术研究所功能薄膜材料研究中心研究员唐永炳带领的研究团队,采用高电压高浓度电解液显著提升钾基双石墨电池的能量密度以及循环稳定性。相关研究成果以6.0 V High-Voltage and Concentrated Electrolyte toward

锂电池材料高电压电解液的介绍

  提高电池能量密度乃锂电池的趋势之一,目前提高能量密度方法主要有两种:一种是提高传统正极材料的充电截止电压,如将钴酸锂的充电电压提升至4.35V、4.4V。但靠提升充电截止电压的方法是有限的,进一步提升电压会导致钴酸锂结构坍塌,性质不稳定;另一种方法则是开发充放电平台更高的新型正极材料,如富锂锰基

风电高电压穿越测试(二)

PAM软件还可以直接测试出电压、电流及功率的正序分量,以及直接一键分析出无功电流注入的响应时间、注入时间以及有功恢复的时间。并且能够进行电压、电流的半周期测试,可以对每一个点的电压进行准确的高精度定位,提供真实可信的高低电压穿越测试结果,更准确地分析各个节点电压、电流功率的变化情况。满足符合行业标准

左心室高电压的病因分析

  目前导致左室高电压的发生机制有如下理论:  1.循环系统器质性疾病等引起继发性介导因素  如去甲肾上腺素、血管紧张素、皮内素、炎症细胞因子、醛固酮等增加,作用于心肌,使心肌细胞重塑,引起心肌细胞肥大;细胞肥大导致左室表面积增加,产生的电偶数目增多,粗大的心肌细胞内部电阻减小致使左室除极产生的电动

左心室高电压的疾病介绍

  左室高电压的诊断意义是很不确切的,它虽多见于左室扩张或肥大,是左室肥大或扩张诊断标准中不可缺少的条件,但受许多因素影响,如胸壁肥厚、电极位置移动都有关系,而且从上述资料看,也不能排除是正常的心电生理表现,也不排除是由于长期过度烟酒作用,致使心肌细胞电生理和血流动力方面发生的一种改变。所以左室肥大

风电高电压穿越测试(一)

当下新基建概念倍受业界关注,能源网作为能源供给的基石在新型基础建设中发挥着必不可少的作用。那么我们的测试仪器在能源网建设的风电测试中能够发挥什么样的作用呢? 新基建能源网建设简介2020年是全面建成小康社会和“十三五”规划收官之年,发展基础设施建设势在必行。以信息网、 交通网、 能源网为框架的新型基

高电流型和高电压型高压变频器

  高电流型  电路拓扑结构如图1所示,在低压变频器的直流环节由于采用了电感元件而得名。输入侧采用可控硅移相控制整流,控制电动机的电流,输出侧为强迫换流方式,控制电动机的频率和相位。能够实现电机的四象限运行。  高电压型  前段引入降压变压器,将电网降压,然后连接低压变频器。低压变频器输入侧可采用可

左心室高电压的临床意义介绍

  体表心电图各导联间Q-T间期的差异称为Q-T间期离散度(QTd)。也即指体表12导联心电图。最理想的是12导联同步记录中测量的最大Q-T间期(QTmax)与最小Q-T间期(QTmin)之差。QTd反映了心室肌复极化的不均一性和电不稳定的程度。QTd显著延长,说明其发生心肌复极不同步的程度增加,容

可供选择的高电压材料的分类介绍

  (1)高电压的尖晶石镍锰酸锂LiNi0.5Mn1.5O4材料,其工作电压可达5.0V,电压平台在4.7V左右,理论容量为147mAh/g,实际容量可达138mAh/g以上。  (2)橄榄石类的高电压材料,例如LiMnPO4和LiCoPO4材料等,其中LiMnPO4材料的电压平台可以达到4.1V左

高纯氮气发生器如何添加电解液

高纯氮气发生器是根据电催化法进行空气分离原理制成。其中电解池是利用燃料电池的逆过程设计而成。当压力稳定且纯净的原料空气进入到电解池中,空气中的氧在阴极被吸附而获得电子并与水作用生成氢氧根离子并迁移到阳极,最后在阳极处失去电子析出氧气,因此空气中的氧不断被分离只留下氮气。再经过后级过滤、稳压、稳流处理