Antpedia LOGO WIKI资讯

科学家合成出可替代柴油的生物燃料

据美国物理学家组织网近日报道,美国科学家们使用合成生物学方法,修改了大肠杆菌和一个酿酒酵母的菌株,制造出了没药烷的前体物没药烯。测试表明,对没药烯进行加氢反应生成的没药烷是一种“绿色”的生物燃料,有潜力替代D2柴油。研究发表在《自然·通讯》杂志上。 “这是科学家们首次报告称没药烷可替代D2柴油,也是首次报告称可通过大肠杆菌和酿酒酵母生产出没药烷。”该研究的主要作者、美国能源部下属的联合生物能源研究所(JBEI)代谢工程(通过基因工程方法改变细胞的代谢途径)项目主管李淳太(音译)说。 与日俱增的燃料成本以及对燃烧化石燃料会加剧全球变暖趋势的担忧等,驱使科学家想尽一切办法寻找碳中和的可再生能源。从多年生牧草和其他非食品植物以及农业废物的纤维素生物质中提取出的液态生物燃料一直被认为有潜力替代汽油、柴油和航空煤油。 不过,现有占主流的生物燃料乙醇只能有限地用于汽油发动机中,而无法用于柴油机或航空喷气式......阅读全文

英用大肠杆菌制造出“生物化石燃料”

  据英国广播公司(BBC)近日报道,英国科学家在最新一期的《美国国家科学院院刊》上撰文指出,他们对一种大肠杆菌菌株的细胞机制进行了修改,让其可以将吸收的糖分转变成合成燃料分子,这种细菌制造出来的油与传统柴油拥有几乎完全一样的组成成分和化学属性。如果这一过程能大规模进行,那么,这种合成燃料有望替代化

奥迪投资研发大肠杆菌生产新型生物燃料

  随着全球排放标准的不断提升,新能源技术已成为降低车辆二氧化碳等排放的重要方法之一。继纯电动、燃料电池等技术后,奥迪正在研发全新的“气”油,其有望成为一种新的能源燃料。   近日奥迪公司可持续产品开发部负责人ReinerMangold近日在接受采访时表示:“我们采用创新技术能够实现可再生燃料的生

美用转基因细菌合成高能火箭燃料

    图:石油基燃料和先进生物燃料的能量密度比较。先进生物燃料(绿色)与石油基燃料(黑色)相比,能量密度较低。蒎烯二聚体(红色)与石油基燃料JP-10能量密度类似。        目前的生物燃料体积热值太低,在应用与火箭、导弹中

工业生物技术:细胞工厂创造绿色世界

  当化石能源走到尽头,人类何以为继?科学家们有一个宏伟的构想:让生物来提供今天人类所必需的一切——我们可以用秸秆、杂草来生产药品、溶剂、汽车、塑料;我们可以提取废水、废气,甚至空气中的有机质、碳元素来转化为柴油、汽油、燃气、电力;我们可以通过大型发酵罐来获得食品、饮料、衣物、鞋帽……这,就是工业生

2014年世界能源环保科技发展回顾

  美 国  新型电池研究获得突破;证明惯性约束核聚变反应释放能量比燃料吸收的多。  佐治亚理工学院开发出一种直接以生物质为原料的低温燃料电池,借助太阳能或废热即能将稻草、锯末和藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高近百倍。加州大学河滨分校开发出一种主要原料是普通沙子的新

佐治亚理工学院运用转基因细菌合成高能火箭燃料

  目前的生物燃料体积热值太低,在应用与火箭、导弹中时,高能燃料非常重要。有一种从树木中提炼的化合物蒎烯,经二聚化后生成蒎烯二聚体,已证明其能量密度和航空燃料JP-10相当。佐治亚理工学院与联合生物能源研究院科学家通过转基因工程改造细菌合成蒎烯,有望替代JP-10用在导弹发射及其他航空领域。从石油中

2013年世界科技发展回顾:能源环保篇

  美 国   最大载人太阳能飞机横穿美国,太阳能电池光电转化率攀高,低温制造晶体硅,研制可拉伸或折叠电池,新催化剂让制氢过程排放近零。   5月3日,世界最大载人太阳能飞机“太阳驱动”号从旧金山升空后于7月6日抵达纽约,完成横穿美国飞行。   6月,莱斯大学和宾夕法尼亚州立大学研制出一款基于

美科学家转基因工程改造细菌合成高能生物燃料

  在需要最小化燃料重量时,高能燃料非常重要。有一种从树木中提炼的化合物蒎烯,经二聚化后生成蒎烯二聚体,已证明其能量密度和航空燃料JP-10相当。佐治亚理工学院与联合生物能源研究院科学家通过转基因工程改造细菌,让它们能合成蒎烯,有望替代JP-10用在导弹发射及其他航空领域。从石油中提炼 JP-1

密歇根大学微生物团队将玉米秸秆和树叶转化为生物燃料

  美国密歇根大学的研究人员将一种真菌和大肠杆菌联合,把坚硬的、废弃植物材料转化为异丁醇。这种生物燃料比乙醇更适合作为汽油替代品。研究人员指出,原则上也可以使用这种方法生产其他具有价值的化学品,如塑料。但他们希望通过有效地方法生产生物燃料,可以最终取代目前的石油基燃料。该项研究成果已发表于最新一期的

【盘点】2018年5大生物技术流行趋势!

  1.细菌群落  我们都听说过人类微生物群体,以及它们是如何秘密地控制着我们的一切。微生物群体对人类的作用,是各种微生物之间相互作用的结果,而不是它们各自的部分的总和。  几十年来,尽管生物分子工程师开始利用某些微生物之间的协同关系来更快地处理化学物质,但我们一直在使用单一微生物(通常是面包酵母或

1月20日《科学》杂志精选

  鸟的吸引力基于错觉之上  研究人员报告说,雄性造园鸟用制造某种错觉的方式来装饰它们的求偶之处以得到其配偶。为了追求雌性,雄性的大造园鸟会集结一套骨头、贝壳、石头及其他灰色物体,这些物体统称“石膏”。该雄鸟会在由致密的茅草枝条搭建成的两堵墙和一个底层组成的某一路径之前花多

纤维素转化为淀粉找到新途径

来自非食用植物的纤维素或许能够转化为可食用的淀粉。  木材中的主要成分纤维素是地球上含量最丰富的有机化合物之一,并且是可再生能源的一种理想来源。如今,生物工程师指出,它还能够解决人类的温饱问题。在一项新的研究中,研究人员找到了一种将纤维素转化为淀粉的新途径,后者是人类食物中最常见的碳水化合物。  乙

姚建年院士:中国化学给世界带来诸多惊喜

       国家自然科学基金委员会副主任 中国化学会理事长 中国科学院院士 姚建年  改革开放30年来,与国内各行各业一样,我国的化学科学研究获得了全方位发展,步入了高速发展时期,无论在基础、应用基础研究还是成果转化、实现产业化

利用大肠杆菌可低成本生产丙烷 5到10年内有望生产

  一个由英国伦敦帝国学院和芬兰图尔库大学的科学家组成的研究小组日前开发出一种通过大肠杆菌制造丙烷的新技术。与藻类制油技术相比,新技术具有成本低、耗能少、易推广的特点,未来有望成为一种极富竞争力的清洁能源生产技术。相关论文发表在《自然·通讯》杂志上。  丙烷是一种清洁能源,它价格低廉,温度适应范围宽

华人学者巧妙利用细胞的职业道德

  最近,华盛顿大学的一个工程师团队,提出了一种方法,通过利用细胞的职业道德,来提高生物燃料、药物、材料和其他有用化学物质的生产。  该研究小组,由工程与应用科学学院能源、环境与化学工程助理教授张福中(Fuzhong Zhang)带领,发现基因完全相同的微生物细胞,有不同的职业道德。该团队开发了一种

青岛能源所提出高温乙醇发酵新策略

  嗜热厌氧菌碳源代谢的代谢与调控网络  戊糖己糖共利用是影响纤维素乙醇等第二代生物燃料成本的关键因素之一。10月13日,PLoS Genetics在线发表了中国科学院青岛生物能源与过程研究所功能基因组团队通过戊糖己糖共利用高温发酵乙醇的最新研究成果——通过嗜热厌氧菌功能基因组学揭示

合成生物学:操纵生物制造业

  如果有一天,自然界中的各种生物可以直接用来充当生产产品的机器或者车间,那么,工业生产或许会发生翻天覆地的变化。   现如今,这一完美的构想正在逐步落地。   自从生物产业被列为国家战略性新兴产业加以培育后,生物制造业也加快了取代化工产业的步伐。而合成生物学由于能够通过人工设计和构建自然界中不

第八届全国微全分析系统学术会议大会报告

  2013年5月16-19日,由中国化学会主办、厦门大学承办、复旦大学、浙江大学协办的第八届全国微全分析系统学术会议、第三届全国微纳尺度生物分离分析学术会议暨第五届国际微化学与微系统学术会议在美丽的海滨城市厦门隆重召开。此次会议旨在为从事相关领域基础、应用和开发研究的学者提供多学科交叉的

解密十大军事生物技术

  美国国防部本月2日宣布新成立“生物技术办公室”,开启新国防之门以来,生物技术在军事上的应用再一次引起大众的关注。   本文盘点了10大生物技术在军事国防上的应用。  一、基因武器   基因武器是指运用遗传工程技术,在一些致病细菌或病毒中,接入能对抗普通疫苗或药物的基因,产生具有显著抗药性的致

新型大肠杆菌菌株 可以消耗二氧化碳生长

   近日,据《Cell》杂志上的一项研究报道,以色列的研究人员创造出了一种新型大肠杆菌菌株,该菌株消耗二氧化碳作为能源,而不是有机化合物。这一成就凸显了细菌新陈代谢的惊人可塑性,并为未来的碳中和生物生产提供框架。https://doi.org/10.1016/j.cell.2019.11.009 

蓝细菌合成生物学研究进展

  光合生物制造技术是指以光合生物为平台,将太阳能和二氧化碳直接转化为生物燃料和生物基化学品的技术,可以在单一平台、单一过程中同时取得固碳减排和绿色生产的效果。蓝细菌是极具潜力的光合微生物平台,相比较于高等植物和真核微藻,具有结构相对简单、生长快速、光合效率高、遗传操作便捷等优势,易于进行光合细胞工

解密十大军事生物技术

  美国国防部本月2日宣布新成立“生物技术办公室”,开启新国防之门以来,生物技术在军事上的应用再一次引起大众的关注。   本文盘点了10大生物技术在军事国防上的应用。10大生物技术   一、基因武器   基因武器是指运用遗传工程技术,在一些致病细菌或病毒中,接入能对抗普通疫苗或药物的基因,产生

美设计出含生物和非生物成分的“活材料”

  生物膜、贝壳、骨骼组织等天然生物系统,能根据环境信号形成多功能、多尺度的生物与非生物成分集合体,比如骨骼,就是由矿物质、活细胞及其他物质组成的矩阵。3月23日出版的《自然·材料》杂志介绍了美国麻省理工大学工程师的最新成果,他们受这些天然材料的启发,合成出包含生物成分和非生物成分的活性生物材料。其

美设计出含生物非生物成分活材料 可应用于能源领域

  生物膜、贝壳、骨骼组织等天然生物系统,能根据环境信号形成多功能、多尺度的生物与非生物成分集合体,比如骨骼,就是由矿物质、活细胞及其他物质组成的矩阵。3月23日出版的《自然·材料》杂志介绍了美国麻省理工大学工程师的最新成果,他们受这些天然材料的启发,合成出包含生物成分和非生物成分的活性生物材料。其

Nat Mat:新材料含生物和非生物成分

          生物膜、贝壳、骨骼组织等天然生物系统,能根据环境信号形成多功能、多尺度的生物与非生物成分集合体,比如骨骼,就是由矿物质、活细胞及其他物质组成的矩阵。3月23日出版的《自然—材料》杂志介绍了美国麻省理工大学工程师

合成基因组发表两月 部分国际反应

  我们也必须记住,自然界本身就是一名已经存在的专家,她在创造可对人类造成极大危害的微生物。合成生物学的最新进展并不一定会把我们带到比现有技术或自然界本身更接近伤害的道路。  慎重的民主就要听不同的观点,考虑对方的论点,最好找到共同点,至少要尊重不同观点,然后作出决定。面对复杂问题各

青岛能源所构建高效产烃细胞工厂研究获进展

  脂肪烃是液体化石燃料的主要组成部分,具有高能量密度、低吸湿性和低挥发性等优点,并且与现有发动机和运输设备有着较好的兼容性。随着蓝细菌等天然产烃微生物脂肪烃合成途径的发现,利用这类天然途径作为合成生物学元件构建高效细胞工厂,成为一种可持续、可再生制备脂肪烃生物燃料的潜在途径。然而目前已报道的生物产

哈佛大学改良大肠杆菌生产生物燃料关键前体

  哈佛大学Wyss生物工程研究所与哈佛医学院系统生物学系的研究人员,通过改造新型工程菌可以生产具有高辛烷值生物燃料的关键前体。通过这种方法,还可以生产药品、生物塑料、除草剂、洗涤剂等产品的前体。该项研究成果已在线发表于6月24日出版的美国国家科学院院刊(PNAS)上。   研究人员选用了标志性的

合成生物学:在分子水平调控生命系统 香山科学会议记

“比起当前的转基因、基因工程等技术,合成生物学的研究更前卫,代表了下一代生物技术。”在日前举行的以“合成生物学”为主题的第322次香山科学会议上,会议执行主席、中国科学院院士、天津大学研究员张春霆说。 来自国内外的40多位专家就“重塑生命”的相关话题展开了热烈讨论。这一领域被认为充满了人类的奇思妙

Pittcon2016部分专题讨论会亮点

  分析测试百科网讯 2015年11月27日,Pittcon宣布其2016年的会议技术方案,包括专题讨论会、口头报告、研讨会、颁奖、海报和技术演示等。会议技术方案的核心为分析化学和应用光谱学,涵盖了广泛应用,有但不限于生物技术、生物医学、药物开发、环境、食品科学、燃料/能源、基因组学、实验