发布时间:2016-02-15 13:36 原文链接: ACSCentSci:干细胞“沉睡”神器—水凝胶结构

  并不像正常细胞,干细胞具有多能性,其可以转变成为任何类型的细胞,从而为治疗很多疾病比如糖尿病、白血病及年龄相关的失明提供一定希望,然而截止到目前为止如何维持干细胞的多能性对科学家们而言依然是一项巨大的挑战,近日一项刊登于国际杂志ACS Central Science上的研究论文中,来自国外的研究人员通过研究发现,模仿昆虫的滞育过程或许可以抑制干细胞,从而就可以有选择性地使得干细胞“沉睡”长达两周。

  近来研究者们发现,将多能干细胞生长于多种不同的表面或许可以促进干细胞分化为特殊类型的细胞,基于此前研究,本文研究中研究者Steve Armes及其同事就假设,合适的环境或许就可以阻断干细胞不断分化,提出这样的假设Armes表示,这或许来源于一些特殊的哺乳动物,比如袋鼠可以选择延迟怀孕,而该过程称之为胚胎滞育,目的在于确保后代可以在合适的环境中出生。

  滞育的胚胎通常会被一层保护性的软组织粘膜所覆盖,因此研究者利用一种合成性的聚合物来开发非常柔软的水凝胶结构,从而模拟天然材料;当多能干细胞被置于水凝胶样结构中时,细胞就会在人体温度下从根本上停止生长及分化,而当降温使得凝胶成为液体状态后,干细胞就会在需要的时候被轻松移除,一旦移走后干细胞就会“苏醒”开始再次生长分化;这样的水凝胶样结构或许就可以被用来储存并且轻松运输干细胞。

  最后研究者表示,当被置于上述水凝胶样结构中,人类胚胎就会进入到滞育状态,这就说明,简单地创造合适的物理环境对于延迟怀孕非常有效,而此前这种现象在人类胚胎中不曾被观察到。

相关文章

植物干细胞命运决定研究获进展

植物能够持续萌发新的枝、叶、花与果实,以顽强的生命力激发人们对生命永续的遐想。这一生命律动都源于核心细胞群——植物干细胞。它们分布于茎顶端、根尖等“生长中枢”,通过精确的分裂与分化,绘制植物生长蓝图。......

第六届中国干细胞与再生医学协同创新平台大会在京召开

11月30日,第六届中国干细胞与再生医学协同创新平台大会在北京召开。大会以“规范?融合?创新”为主题,旨在搭建高水平交流与合作平台,汇聚各方力量共商干细胞与再生医学领域标准化建设、资源整合与协同创新大......

研究发现限制人多能干细胞发育潜能的新机制

在国家重点研发计划、国家自然科学基金等项目资助下,中国科学院广州生物医药与健康研究院研究员潘光锦、副研究员单永礼团队成功揭示了一种限制人多能干细胞发育潜能的关键因子——去泛素化酶USP7,并深入阐释了......

人类胃器官早期发育机制与体外重构研究获突破

清华大学副教授邵玥团队与合作者利用人多能干细胞,首次在体外培养出一种包含胃底和胃窦双极分布的胃器官发育模型,破解了WNT信号梯度悖论,建立了微尺度组织定向组装技术,可对类胃囊中不同谱系的组织模块独立开......

诺奖得主安医大开讲共话干细胞研究未来

“这里将百年历史积淀与现代医学教育完美融合,这种传承与创新的平衡令人印象深刻。”9月3日下午,安徽医科大学新医科中心(新校区)迎来一位国际“大咖”:诺贝尔生理学或医学奖得主、英国卡迪夫大学教授马丁·埃......

风口上的对话:IGC广州站议程首发,60+干细胞/免疫细胞/外泌体领域权威专家揭秘下一个增长点,千人见证细胞产业如何巨变

【聚焦细胞治疗新纪元,共启产业转化新征程】2025年,中国细胞产业迎来爆发式突破:首款干细胞疗法获批上市、博鳌乐城首发收费清单、实体瘤细胞药物申报上市、国家政策力推抗衰老领域……行业正以前所未有的速度......

【首批阵容官宣】十年深耕,IGC广州站集结60+细胞行业顶流:干细胞、外泌体、免疫细胞三线并进,解锁千亿产业新机遇!

十年积淀,IGC2025-广州站第十届细胞及衍生物研发与产业化大会将在10月23-24日于广州再度创新启航!IGC广州站以“政策催化与技术创新,挖掘细胞产业应用多样性”为主题,从主会场与四大专场论坛出......

干细胞育出有完整血管网络的“迷你”肺

美国科学家首次利用干细胞培育出具有完整血管网络的肺类器官。这些“迷你”肺与人类肺部的发育过程高度相似。这项发表于《细胞》杂志的最新成果,不仅揭开了人类早期发育的奥秘,也为构建肠道和结肠等其他血管化器官......

“超级再生”动物激发人类医疗灵感

在受伤后,一些涡虫几乎可以再生体内的所有细胞,墨西哥钝口螈可以重建整个四肢和部分大脑,斑马鱼可以修复断裂的脊髓,绿安乐蜥则能重新长出尾巴。鱼类、两栖动物、爬行动物和蠕虫展现的再生能力令研究人员着迷已久......

仅需5天,干细胞变“救命”血管

当实验小鼠的血管受损后,科学家将仅用5天时间在实验室中培育出的微型球状人工血管植入其体内,成功恢复了受损组织的血液供应,大幅减少了组织坏死的发生。这一突破为未来治疗因事故或血栓导致的组织损伤带来了新的......