美国科学家的一项最新研究,定量测定了单壁碳纳米管(SWCNT)的电学性质。他们发现,单壁碳纳米管中每32个碳原子就能够捕获并存储一个电子,而且很容易实现受控放电。这一发现有助于科学家按照需求设计出作为电容器的碳纳米管,并提高电子设备和太阳能电池的光电和电气化学性能。相关论文发表在美国化学学会的ACS Nano杂志上。
进行该项研究的是美国圣母大学(University of Notre Dame)的Anusorn Kongkanand和Prashant Kamat,他们监控了由二氧化钛半导体颗粒和单壁碳纳米管组成的复合系统,在达到电荷平衡的过程中电子的转移。
当二氧化钛纳米颗粒受到紫外光激发时,它的电子会发生分离,其中的一些由于受到限制而不能自由移动,每12纳米长的二氧化钛颗粒中大约有3770个电子是这种情况。这些受限制的电子会呈现出蓝色。然而,当研究人员将二氧化钛颗粒和单壁碳纳米管形成系统时,蓝色减弱了,这是由于一些封存于二氧化钛中的电子转移到了单壁碳纳米管。研究人员发现,当单壁碳纳米管的浓度达到100 mg/L时,蓝色彻底消失,这说明二氧化钛中的封存电子完全转移到了单壁碳纳米管。
计算表明,单壁碳纳米管中每32个碳原子就能够捕获并存储一个电子,整个过程在亿分之一秒内完成。如此之高的电子存储能力使碳纳米管变成一个“超级电容器”。
论文高级作者Kamat表示,“利用碳纳米管所占空间小的特点来提升电子的存储能力,对于电池的小型化至关重要。”Kamat强调,只有当半导体颗粒和碳纳米管二者的费米能达到平衡,电子转移才会停止,因此,32个碳原子捕获一个电子是受到系统能量限制的保守估计。这也就意味着如果改变半导体材料或者改变充电方法,单壁碳纳米管有可能存储更多的电子。同时,半导体的能量级别越高,转移的电子也会越多。
为了实现放电,研究人员在系统中加入可接收电子的硫堇(thionine),其还原电势(reduction potential)比碳纳米管更高,因此电子会从碳纳米管中流入硫堇。
研究人员表示,“单壁碳纳米管接收和转移电子的能力凸显了它在电子转移过程中的中介作用。单壁碳纳米管的充放电特性将在提升光电转化方面起到重要的作用。”
二氧化钛半导体颗粒和单壁碳纳米管之间会发生电子转移(图片来源:Anusorn Kongkanand)
相关阅读(英文)
图(a)氢键不平衡示意图;(b)体相水自由基与界面电化学反应协同示意图在国家自然科学基金项目(批准号:22372027)的资助下,电子科技大学崔春华教授团队在电解质水溶液电化学领域取得进展,研究成果以......
加拿大科学家描述了一种电化学方法来提高氘聚变速率。虽然这一方法距离实现能量输出超过输入仍有很远,但实验展示了用低能量电化学过程在高得多的能级上影响核反应速率的可行性。相关研究8月20日发表于《自然》。......
为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将太原理工大学2025年4月采购意向公开如下:......
12月30日,中国工程院院士、深圳大学深地科学与绿色能源研究院院长谢和平团队有关“低能耗电化学碳捕集”的最新研究成果发表于《自然—通讯》。随着全球气候变化加剧,如何有效减少大气中的CO2已成为应对气候......
美国莱斯大学团队开发了一种创新的电化学反应器,或可显著减少直接空气捕获(即从大气中去除二氧化碳)所需的能量消耗。这一新型反应器的设计不仅更加灵活和易于扩展,而且有望成为对抗气候变化、减轻温室气体排放的......
储能作为新型电力系统中的关键一环,发展日益受到关注。项目越建越多、系统越来越复杂,安全事故开始冒头,特别是电化学储能电站起火爆炸事故频现,夯实安全之基迫在眉睫。近日,应急管理部办公厅正式发布《关于批准......
近日,暨南大学物理与光电工程学院(理工学院)研究员郭团受邀在《激光与光子学评论》(Laser&PhotonicsReviews)发表题为《基于“光纤实验室”的电池电化学原位传感技术进展》的特邀......
近期,中国科学院宁波材料技术与工程研究所氢能与储能材料技术实验室研究员陆之毅带领的电化学环境催化团队,通过在两个固体之间引入致密的水合层,使得用于原位海水电解的阴极具有了疏固特性,在天然海水直接电解制......
据最新一期《先进功能材料》报道,一个国际科研团队开发出一种治疗慢性伤口的有效方法,不需要使用抗生素,而是使用一种电离气体来激活伤口敷料。研究人员认为,新方法在解决抗生素耐药性病原体方面取得了重大进步,......
近日,中国化学会电化学专业委员会(CSE)首次发布“电化学10大科学问题”。电化学是研究电能与化学能以及电能与物质之间相互转换及其规律的科学,并已逐渐发展成为跨越基础科学(理论)和应用科学(工程、技术......