中科院金属所研究员赵九州领导的课题组在国家自然科学基金重大项目的资助下,从原子尺度出发,采用分子动力学方法开展工作,探索了合金凝固的微观过程,取得了一些创新性成果,成果陆续发表在Applied Physics Letters, Material Science and Engineering A,Intermetallic 和Computational Material Science等杂志上。
该课题组研究了深过冷条件下金属及合金的凝固过程,展现了合金形核的微观细节,发现在形核初期,体系中存在大量不稳定晶胚,它们通过结构起伏和成份选择,最终形成稳定的临界晶核,晶核成份与合金原始成分近似,见图1、图2。与早期报道的基于硬球模型的研究结果不同,本研究表明,稳定的FCC结构原子早在晶胚出现前就已存在,并非由亚稳的BCC结构原子转变而来。这些原子呈片层状分布,与少量HCP结构原子相互混合,共同构成临界核。临界核尺寸随过冷度的增加而减小。正二十面体非晶团簇结构在过冷液态体系中大量存在,但它不参与形核过程,在晶核形成前完全消失,见图3。
研究人员考察了合金非晶形成能力与形核热力学及动力学之间的关系。研究表明具有较高非晶形成能力的合金晶体形核驱动力较小,其过冷熔体的热力学稳定性较高,组元原子扩散重排较困难。用分子动力学模拟法构建了过冷合金体系液-固转变的时间-温度-转变曲线,并用其预测了非晶形成的临界冷却速度,见图4。
该课题组还模拟研究了非晶合金的三维结构。结果表明,非晶可看作由多数正二十面体团簇及部分缺陷二十面体团簇交互作用而形成的网状结构。相对于正二十面体,缺陷二十面体团簇稳定性较差。各二十面体团簇在非晶体系中所占的比例与其所含五次对称结构(1551键对)的数目有关,含五次对称结构多的团簇所占比例较高。为了降低体系的自由能,在所有原子团簇中,较大原子均优先占据顶点位置,而小原子则倾向于占据团簇中心较大的空隙位置。
研究人员用分子动力学方法预测了液态金属Cu均质形核的临界尺寸大小,结合经典形核理论,计算了不同过冷度下体系固液界面能、形核自由能壁垒等热力学参数。计算结果与实验值吻合较好,弥补了深过冷条件下实验测定热力学参数困难的不足。

图1 700K时Ni6Cu4合金临界晶核的形成过程。
图中白色原子为不稳定原子,可随时离开原子团簇,黑色原子为稳定原子。t为驰豫时间。

图2 Ni6Cu4合金在不同温度保温时,熔体内原子团簇演变为临界晶核过程中
团簇内部Cu、Ni原子成份比随时间的变化关系。图中箭头所指时间为临界晶核形成时间。

图3 体系中晶体团簇(空心圆)、非晶团簇(三角)数目及最大晶体团簇所含原子数(实心圆)随时间变化关系。t1为晶胚初现时间,t2为临界晶核形成时间,t3为体系晶化结束时间。
由韩国釜山大学与日本北海道大学联合组成的研发团队,研制出一种具有革命性的新型晶体材料。这种材料能在相对温和的温度条件下,像生命体般反复进行氧气的吸收与释放。这项突破性发现将为燃料电池等清洁能源技术的发......
近期,中国科学院2025年仪器设备部门集中采购项目陆续公布中标结果。这些中标仪器涉及射线式分析仪器类、质谱仪类和显微镜类,包括X射线光电子能谱仪、多硫同位素质谱仪、冷冻聚焦离子束-扫描电子显微镜、超高......
近日,中国科学院基础医学与肿瘤研究所(筹)(简称“中科院医学所”)一批尖端科研设备成功中标,总中标金额达1302.27万元。此次中标设备涵盖超大视野荧光变倍显微镜、活细胞无标记全景超分辨显微镜、数字W......
十一年前,中科院量子信息重点实验室主任郭光灿还只是名普通教授。当他带着几个研究生跑去申请国家自然科学基金委员会(下称基金委)设立的“创新研究群体科学基金”时,差点被“毙掉”。“你们的方向很好,工作基础......
2025年5月20日,中国检验检测学会副会长生飞、测试装备分会秘书长邢志教授一行赴中国科学院空间应用工程与技术中心(以下简称“中科院空间中心”)调研,双方围绕国产科学仪器评价体系的建设与应用展开深入座......
为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将中国科学院昆明植物研究所2025年6月政府采购意向公开如下:序号采购项目名称......
根据中国科学院广州生物医药与健康研究院最新公布的政府采购意向,该院计划在2025年5-6月进行科研设备采购,预算总金额高达5123万元。此次的采购计划包括自动化组织块冷冻切片贴片设备、自动化保活冻存系......
3月30日,为期3天的2025第二届中国(江西)国际有色金属暨冶金工业展览会,与同期举办的2025中国(江西)国际绿色矿业博览会、2025中国(江西)国际铸造压铸、锻造、热处理工业炉展览会,在南昌绿地......
金属材料在长期使用过程中产生的疲劳失效是威胁重大工程安全的隐形杀手。经过多年攻关,我国科学家日前破解了这一难题,成功让金属材料在保持高强度、高塑性的同时,还大幅提升了抗疲劳能力。这一成果北京时间4日凌......
金属是重要的基础材料,广泛应用于建筑、能源、交通等领域。但当金属受到非对称的循环外力时,会产生塑性变形,塑性变形逐渐累积就会形成“棘轮损伤”。这种损伤会导致金属突然断裂,严重威胁工程安全。为了攻克这一......