发布时间:2019-08-03 13:27 原文链接: BlockadeofNeurotransmitterRelasebyBotulinumToxin

The neuromuscular junction communicates action potentials from motor neurons across a synapse to skeletal muscle. When an action impulse arrives at the neuromuscular junction, the entry of calcium through voltage-gated calcium channels causes synaptic vesicles to fuse with the presynaptic plasma membrane and release the neurotransmitter acetylcholine into the synaptic cleft. Acetylcholine diffuses across the cleft and binds to muscle acetylcholine receptors, causing depolarization and an action potential that travels throughout the length of the muscle cell triggering muscle contraction. The release of neurotransmitter at the synapse involves the fusion of synaptic vesicles with the neuronal plasma membrane and requires several proteins that act together to form a synaptic fusion complex. These proteins, collectively called SNARE proteins, include SNAP-25, syntaxin, and synaptobrevin. Homologs of these proteins are also involved in membrane fusion in other aspects of vesicle trafficking. Synaptobrevin (also called VAMP2) is localized at the synaptic vesicle membrane, while SNAP-25 and syntaxin are associated with the plasma membrane. Calcium release causes the formation of a complex, bringing the synaptic vesicle in close proximity with the plasma membrane and allowing fusion of the membranes. Biological toxins often disrupt nervous function, particularly the action of motor neurons. Botulinum toxin, synthesized by the bacteria Clostridium botulinum, is one of the most potent toxins known and acts by blocking neurotransmitter release at the neuromuscular junction. Botulinum toxin is a protein composed of two subunits joined by a disulfide bond, a 100 kD heavy subunit and a 50 kD light subunit that is a protease. There are seven serotypes of botulinum with distinct toxins. Tetanus toxin is similar in structure and in mechanism of action to botulinum toxin. The toxins can be absorbed in the intestine to travel in the blood to its site of action, at the neuromuscular junction. At the synapse botulinum toxin binds to the presynaptic membrane, and large subunit mediates internalization into the neuron through endocytosis. Once inside the neuron, the light chain is translocated across the vesicular membrane to act as a protease on cytoplasmic substrates. The targets of the toxin protease include the components of the synaptic fusion complex. Tetanus toxin and botulinum B, D, F and G toxins degrade synaptobrevin, while botulinum A, C and E toxins cleave SNAP-25. Syntaxin is also targeted by serotype C toxin. Destruction of these proteins by botulinum toxin prevents vesicular fusion in response to action potentials, blocking the release of acetylcholine. This blockade of communication between the nervous system and skeletal muscle can cause paralysis and can lead to death if the paralysis is severe enough to prevent breathing. In addition to acting as a toxin during botulism infection, botulinum toxin is also now being used as a pharmaceutical. Careful administration of very small doses of toxin can restrict its action locally to reduce overactive muscles, such as those involved in twitching of the eyes. Relaxing the muscles around the eyes can also reduce wrinkles in the eye region, leading to cosmetic use of this potent bacterial toxin. The potency of botulinum toxin has also caused concern that it could be used as a biological weapon, creating interest in the identification of inhibitors of this toxin.

Contributor:

REFERENCES: Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, OToole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001 Feb 28;285(8):1059-70. Review. Blasi J. et al. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365(6442), 160-3 Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C., Scheller, R.H. (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97(2), 165-74 Chen, Y.A., Scales, S.J., Scheller, R.H. (2001) Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30(1), 161-70 Loranger SS, Linder ME. SNAP-25 traffics to the plasma membrane by a syntaxin-independent mechanism. J Biol Chem. 2002 Jul 11 OConnor V. et al. (1997) Disruption of syntaxin-mediated protein interactions blocks neurotransmitter secretion. Proc Natl Acad Sci U S A 94(22), 12186-91 Schiavo G. et al. (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359(6398), 832-5


相关文章

科学家将人工智能技术成功用于蛋白质复合物结构预测

蛋白质作为构成人体组织器官的支架和主要物质,在人体生命活动中起着重要作用。蛋白质的相互作用能产生许多效应,如形成特异底物作用通道、生成新的结合位点、失活、作用底物专一性和动力学变化等,细胞的代谢、信号......

发力癌症分子病理诊断,无锡臻和全资收购TissueofOrigin®

2021年9月9日,无锡臻和生物科技有限公司(以下简称“臻和科技”)与美国VyantBio公司签署TissueofOrigin®(以下简称“TOO®”)全球权益和ZL转让协议,全资收购这款唯一获FDA......

这3个杂志撤回中国学者249篇文章,包含上交、中山等名校

2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同时撤回了中国学者49篇文章。从2019年开始,Journalo......

肿瘤治疗的强心剂,中国学者开发肿瘤治疗新策略

磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......

llumina宣布推出新型基因分型芯片|支持AllofUs研究计划

2018年12月6日,来自圣迭戈的消息——Illumina公司(纳斯达克股票代码:ILMN)今天宣布推出新型高密度基因分型芯片Infinium™GlobalDiversityArray。这款芯片设计源......

TSQ测定牲畜草料及食品基质中的毒枝霉素mycotoxin

TSQ测定牲畜草料及食品基质中的毒枝霉素mycotoxin......

SDSPAGE异常电泳现象及分析SDSPAGEHallofShame

SDS-PAGE异常电泳现象及分析SDS-PAGEHallofShame.pdf  很不错的东东~~推荐下~......

Preparationofdenaturing6%

Preparationofdenaturing6%polyacrylamidegelsformicrosatelliteanalysis(alsoforSSAP,high-resolutionIRAP......